Skip to main content
Top
Published in: Polymer Bulletin 6/2015

01-06-2015 | Original Paper

Preparation and characterization of chitosan–hydroxyapatite–glycopolymer/Cloisite 30 B nanocomposite for biomedical applications

Authors: Amal Amin, Heba Kandil, Hanem M. Awad, Mohamed Nader Ismail

Published in: Polymer Bulletin | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new composite was synthesized from chitosan/hydroxyapatite and glycopolymer grafted onto a Cloisite 30B clay surface (CS/HAP/clay-Gh) in aqueous media via a solvent casting and evaporation method. Another composite containing chitosan/hydroxyapatite and pristine Cloisite 30B (CS/HAP/clay) was prepared and compared with the (CS/HAP/clay-Gh). The resulting composites were characterized using various analytical tools such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analyses (TGA) and scanning electron microscopy (SEM). Water uptake capability or swelling was tested for each composite. The cytotoxicity of the resulting tri-component composites was tested against a breast carcinoma cell line (MCF-7), liver carcinoma cell line (HepG-2) and a normal human skin fibroblast cell line (BJ-1) by MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] as well as LDH (lactate dehydrogenase) assay. The obtained preliminary results showed good properties for CS/HAP/clay-Gh on the way to be used in the future in the biomedical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S (2011) Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering. Effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12:3156–3165CrossRef Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S (2011) Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering. Effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12:3156–3165CrossRef
2.
go back to reference Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef
3.
go back to reference Wu C, Pan J, Bao Z, Yu Y (2007) Fabrication and characterization of chitosan microcarriers for hepatocyte culture. J Mater Sci Mater Med 18:2211–2214CrossRef Wu C, Pan J, Bao Z, Yu Y (2007) Fabrication and characterization of chitosan microcarriers for hepatocyte culture. J Mater Sci Mater Med 18:2211–2214CrossRef
4.
go back to reference Kim GM (2010) Fabrication of bio-nanocomposite nanofibers mimicking the mineralized hard tissues via electrospinning process. In: Kumar A (ed) Nanofibers. Intech, Croatia, pp 69–88 Kim GM (2010) Fabrication of bio-nanocomposite nanofibers mimicking the mineralized hard tissues via electrospinning process. In: Kumar A (ed) Nanofibers. Intech, Croatia, pp 69–88
5.
go back to reference Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRef Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRef
6.
go back to reference Gasser B (2000) About composite materials and their use in bone surgery. Injury 31:D48–D53CrossRef Gasser B (2000) About composite materials and their use in bone surgery. Injury 31:D48–D53CrossRef
7.
go back to reference Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711CrossRef Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711CrossRef
8.
go back to reference Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2000) Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Eng Mater 192–195:673–676 Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2000) Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Eng Mater 192–195:673–676
9.
go back to reference Chen F, Wang ZC, Lin CJ (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nanocomposite for use in biomedical materials. Mater Lett 57:658–662 Chen F, Wang ZC, Lin CJ (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nanocomposite for use in biomedical materials. Mater Lett 57:658–662
10.
go back to reference Liao SS, Cui FZ, Zhang W, Feng QL (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res Part B Appl Biomater 69B:158–165CrossRef Liao SS, Cui FZ, Zhang W, Feng QL (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res Part B Appl Biomater 69B:158–165CrossRef
11.
go back to reference Deng XM, Hao JY, Wang CS (2002) Preparation and mechanical properties of nanocomposites of poly(d, l. lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 22:2867–2873CrossRef Deng XM, Hao JY, Wang CS (2002) Preparation and mechanical properties of nanocomposites of poly(d, l. lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 22:2867–2873CrossRef
12.
go back to reference Wei J, Li YB, Chen WQ, Zuo Y (2003) A study on nanocomposite of hydroxyapatite and polyamide. J Mater Sci 38:3303–3306CrossRef Wei J, Li YB, Chen WQ, Zuo Y (2003) A study on nanocomposite of hydroxyapatite and polyamide. J Mater Sci 38:3303–3306CrossRef
13.
go back to reference Hung M, Feng JQ, Wang JX, Zhang XD, Li YB, Yan YG (2003) Synthesis and characterization of nano-HA/PA66 composites. J Mater Sci Mater Med 14:655–660CrossRef Hung M, Feng JQ, Wang JX, Zhang XD, Li YB, Yan YG (2003) Synthesis and characterization of nano-HA/PA66 composites. J Mater Sci Mater Med 14:655–660CrossRef
14.
go back to reference Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93:256–262CrossRef Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93:256–262CrossRef
15.
go back to reference Venkatesan J, Qian ZJ, Ryu B, Kumar NA, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan—natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577CrossRef Venkatesan J, Qian ZJ, Ryu B, Kumar NA, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan—natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577CrossRef
16.
go back to reference Venkatesan J, Venkatesan J, Pallela R, Bhatnagar I, Kim SK (2012) Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1033–1042CrossRef Venkatesan J, Venkatesan J, Pallela R, Bhatnagar I, Kim SK (2012) Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1033–1042CrossRef
17.
go back to reference Mututuvari TM, Harkins AL, Tran CD (2013) Facile synthesis, characterization, and antimicrobial activity of cellulose–chitosan–hydroxyapatite composite material: a potential material for bone tissue engineering. J Biomed Mater Res, Part A 101:3266–3277 Mututuvari TM, Harkins AL, Tran CD (2013) Facile synthesis, characterization, and antimicrobial activity of cellulose–chitosan–hydroxyapatite composite material: a potential material for bone tissue engineering. J Biomed Mater Res, Part A 101:3266–3277
18.
go back to reference Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials 28:781–790CrossRef Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials 28:781–790CrossRef
19.
go back to reference Zhang L, Tang P, Zhang W, Xu M, Wang Y (2010) Effect of chitosan as a dispersant on collagen-hydroxyapatite composite matrices. Tissue Eng Part C Methods 16:71–79CrossRef Zhang L, Tang P, Zhang W, Xu M, Wang Y (2010) Effect of chitosan as a dispersant on collagen-hydroxyapatite composite matrices. Tissue Eng Part C Methods 16:71–79CrossRef
20.
go back to reference Xiao X, Liu R, Huang Q, Ding X (2009) Preparation and characterization of hydroxyapatite/polycaprolactone-chitosan composites. J Mater Sci Mater Med 20:2375–2383CrossRef Xiao X, Liu R, Huang Q, Ding X (2009) Preparation and characterization of hydroxyapatite/polycaprolactone-chitosan composites. J Mater Sci Mater Med 20:2375–2383CrossRef
21.
go back to reference Liuyun J, Yubao L, Chengdong X (2009) A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I. Preparation and properties. J Mater Sci Mater Med 20:1645–1652CrossRef Liuyun J, Yubao L, Chengdong X (2009) A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I. Preparation and properties. J Mater Sci Mater Med 20:1645–1652CrossRef
22.
go back to reference Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:034122CrossRef Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:034122CrossRef
23.
go back to reference Kim S, Kim Y, Yoon T, Park S, Cho I, Kim E, Kim I, Shin J (2004) The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials 25:5715–5723CrossRef Kim S, Kim Y, Yoon T, Park S, Cho I, Kim E, Kim I, Shin J (2004) The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials 25:5715–5723CrossRef
24.
go back to reference Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release 134:111–117CrossRef Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release 134:111–117CrossRef
25.
go back to reference Higashiyama S, Noda M, Muraoka S, Hirose M, Ohgushi H, Kawase M (2003) Transplantation of hepatocytes cultured on hydroxyapatite into Nagase analbuminemia rats. J Biosci Bioeng 96(1):83–85CrossRef Higashiyama S, Noda M, Muraoka S, Hirose M, Ohgushi H, Kawase M (2003) Transplantation of hepatocytes cultured on hydroxyapatite into Nagase analbuminemia rats. J Biosci Bioeng 96(1):83–85CrossRef
26.
go back to reference Liu ZS, Tang SL, Ai ZL (2003) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 9(9):1968–1971 Liu ZS, Tang SL, Ai ZL (2003) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 9(9):1968–1971
27.
go back to reference Pearson S, Chen G, Stenzel MH (2011) Synthesis of glycopolymers. In: Narain R (ed) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels. Wiley, Canada, pp 1–108 Pearson S, Chen G, Stenzel MH (2011) Synthesis of glycopolymers. In: Narain R (ed) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels. Wiley, Canada, pp 1–108
28.
go back to reference Li ZC, Liang YZ, Chen GQ, Li FM (2000) Synthesis of amphiphilic block copolymers with well defined glycopolymer segment by atom transfer radical polymerization. Macromol Rapid Commun 21:375–380CrossRef Li ZC, Liang YZ, Chen GQ, Li FM (2000) Synthesis of amphiphilic block copolymers with well defined glycopolymer segment by atom transfer radical polymerization. Macromol Rapid Commun 21:375–380CrossRef
29.
go back to reference Pyun J, Kowalewski T, Matyjaszewski K (2003) Synthesis of polymer brushes using atom transfer radical polymerization. Macromol Rapid Commun 24:1043–1059CrossRef Pyun J, Kowalewski T, Matyjaszewski K (2003) Synthesis of polymer brushes using atom transfer radical polymerization. Macromol Rapid Commun 24:1043–1059CrossRef
30.
go back to reference Yoon KR, Ramaraj B, Lee S, Yu JS, Choi IS (2009) Surface-initiated atom transfer radical polymerization of 3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-α- D-glucofuranoside onto gold surface. J Biomed Mater Res A 88A:735–740CrossRef Yoon KR, Ramaraj B, Lee S, Yu JS, Choi IS (2009) Surface-initiated atom transfer radical polymerization of 3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-α- D-glucofuranoside onto gold surface. J Biomed Mater Res A 88A:735–740CrossRef
31.
go back to reference Datta H, Bhowmick AK, Singha NK (2008) Tailor-made hybrid nanostructure of poly(ethyl acrylate)/clay by surface-initiated atom transfer radical polymerization. J Polym Sci Part A Polym Chem 46:5014–5027CrossRef Datta H, Bhowmick AK, Singha NK (2008) Tailor-made hybrid nanostructure of poly(ethyl acrylate)/clay by surface-initiated atom transfer radical polymerization. J Polym Sci Part A Polym Chem 46:5014–5027CrossRef
32.
go back to reference Ohno K, Tsujii Y, Fukuda T (1998) Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. J Polym Sci Part A Polym Chem 36:2473–2481CrossRef Ohno K, Tsujii Y, Fukuda T (1998) Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. J Polym Sci Part A Polym Chem 36:2473–2481CrossRef
33.
go back to reference Amin A, Kandil HS, El-Shafie K, Ramadan A, Ismail MN (2013) Preparation of homo and block glycopolymers/layered silicate nanocomposites by surface-initiated atom transfer radical polymerization. J Colloid Sci Biotechnol 2:226–235CrossRef Amin A, Kandil HS, El-Shafie K, Ramadan A, Ismail MN (2013) Preparation of homo and block glycopolymers/layered silicate nanocomposites by surface-initiated atom transfer radical polymerization. J Colloid Sci Biotechnol 2:226–235CrossRef
34.
go back to reference Gao C, Muthukrishnan S, Li W, Yuan J, Xu Y, Müller AHE (2007) Linear and hyperbranched glycopolymer-functionalized carbon nanotubes: synthesis, kinetics, and characterization. Macromolecules 40:1803–1815CrossRef Gao C, Muthukrishnan S, Li W, Yuan J, Xu Y, Müller AHE (2007) Linear and hyperbranched glycopolymer-functionalized carbon nanotubes: synthesis, kinetics, and characterization. Macromolecules 40:1803–1815CrossRef
35.
go back to reference Katti KS, Turlapati P, Verma D, Bhowmik R, Gujjula PK, Katti DR (2006) Static and dynamic mechanical behavior of hydroxyapatite–polyacrylic acid composites under simulated body fluid. Am J Biochem Biotechnol 2:73–79CrossRef Katti KS, Turlapati P, Verma D, Bhowmik R, Gujjula PK, Katti DR (2006) Static and dynamic mechanical behavior of hydroxyapatite–polyacrylic acid composites under simulated body fluid. Am J Biochem Biotechnol 2:73–79CrossRef
36.
go back to reference Hamdy NA, Anwar MM, Abu-Zied KM, Awad HM (2013) Synthesis, tumor inhibitory and antioxidant activity of new polyfunctionally 2-substituted 5,6,7,8-tetrahydro-naphthalene derivatives containing pyridine, thioxopyridine and pyrazolo-pyridine moieties. Acta Pol Pharm Drug Res 70:987–1001 Hamdy NA, Anwar MM, Abu-Zied KM, Awad HM (2013) Synthesis, tumor inhibitory and antioxidant activity of new polyfunctionally 2-substituted 5,6,7,8-tetrahydro-naphthalene derivatives containing pyridine, thioxopyridine and pyrazolo-pyridine moieties. Acta Pol Pharm Drug Res 70:987–1001
37.
go back to reference Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SHS, Elsarnagawy T, Albarrag AM, Al-Jassir FF, Abdo HS (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25:1–9CrossRef Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SHS, Elsarnagawy T, Albarrag AM, Al-Jassir FF, Abdo HS (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25:1–9CrossRef
38.
go back to reference Cheng X, Li Y, Zuo Y, Zhang L, Li J, Wang H (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C 29:29–35CrossRef Cheng X, Li Y, Zuo Y, Zhang L, Li J, Wang H (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C 29:29–35CrossRef
39.
go back to reference Ramovatar M, Kavindra KK, Madhu R, Paulraj R (2012) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J Nanopart Res 14:712CrossRef Ramovatar M, Kavindra KK, Madhu R, Paulraj R (2012) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J Nanopart Res 14:712CrossRef
40.
go back to reference Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef
41.
go back to reference Isikli C, Hasirci N (2012) Surface and cell affinity properties of chitosan-gelatin-hydroxyapatite composite films. Key Eng Mater 493–494:337–342 Isikli C, Hasirci N (2012) Surface and cell affinity properties of chitosan-gelatin-hydroxyapatite composite films. Key Eng Mater 493–494:337–342
42.
go back to reference Chen L, Mccrate JM, Lee JCM, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708CrossRef Chen L, Mccrate JM, Lee JCM, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708CrossRef
Metadata
Title
Preparation and characterization of chitosan–hydroxyapatite–glycopolymer/Cloisite 30 B nanocomposite for biomedical applications
Authors
Amal Amin
Heba Kandil
Hanem M. Awad
Mohamed Nader Ismail
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 6/2015
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1351-2

Other articles of this Issue 6/2015

Polymer Bulletin 6/2015 Go to the issue

Premium Partners