Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2022

11-11-2022 | Invited Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Preparation of meso-macro bimodal porous amorphous silica-alumina as an acidic catalyst

Authors: Maki Inoue, Ryoji Takahashi, Fumiya Sato

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A bimodal amorphous silica-alumina with macropores and mesopores of sizes 2–4 µm and 10 nm, respectively, was prepared with an alumina content of up to 30 wt% using a sol–gel method. The requisite amount of water to generate the 2–4 µm macropores decreased with increasing alumina content. However, this decrease reached a limiting value, and the gelation temperature needed to be increased at alumina contents ≥20 wt%. Because the alkaline resistance increases with increasing alumina content, the aging temperature needed to be increased to obtain 10 nm mesopores. In the acidic isomerization of 1-octene over silica-alumina, homogeneous sol–gel samples were more active than those heterogeneously impregnated. The conversion of 1-octene increased with increasing alumina content up to 15 wt%, while the activity decreased above 30 wt% because of because of Al2O3 aggregation. The catalytic results, together with the temperature-programmed desorption of NH3, indicate that the sol–gel sample generates Brønsted acid sites via the formation of Si-O-Al bonds, whereas the impregnated sample probably generates Lewis acid sites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Takahashi R, Sato S, Sodesawa T, Arai K, Yabuki M (2005) Effect of diffusion in catalytic dehydration of alcohol over silica–alumina with continuous macropores. J Catal 229:24–29CrossRef Takahashi R, Sato S, Sodesawa T, Arai K, Yabuki M (2005) Effect of diffusion in catalytic dehydration of alcohol over silica–alumina with continuous macropores. J Catal 229:24–29CrossRef
2.
go back to reference Nakanishi K, Komura H, Takahashi R, Soga N (1994) Phase Separation in Silica Sol–Gel System Containing Poly(ethylene oxide). I. Phase Relation and Gel Morphology. Bull Chem Soc Jpn 67:1327–1335CrossRef Nakanishi K, Komura H, Takahashi R, Soga N (1994) Phase Separation in Silica Sol–Gel System Containing Poly(ethylene oxide). I. Phase Relation and Gel Morphology. Bull Chem Soc Jpn 67:1327–1335CrossRef
3.
go back to reference Anne G, Zakaria A, Bilel S, Youcef D, Katarzyna S, Andrzej J, Franck T, Hadj H, Abdelkader B, Francesco R, Francois F (2016) Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition. Inorganics 4:9CrossRef Anne G, Zakaria A, Bilel S, Youcef D, Katarzyna S, Andrzej J, Franck T, Hadj H, Abdelkader B, Francesco R, Francois F (2016) Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition. Inorganics 4:9CrossRef
4.
go back to reference Mingliang S, Tianbo Z, Zhaofei M, Zunfeng L (2019) Facile preparation of macro-mesoporous zirconium titanate monoliths via a sol–gel reaction accompanied by phase separation. J Mater Res 34:4066–4075CrossRef Mingliang S, Tianbo Z, Zhaofei M, Zunfeng L (2019) Facile preparation of macro-mesoporous zirconium titanate monoliths via a sol–gel reaction accompanied by phase separation. J Mater Res 34:4066–4075CrossRef
5.
go back to reference Takahashi R, Sato S, Sodesawa T, Yabuki M (2001) Silica–Alumina Catalyst with Bimodal Pore Structure Prepared by Phase Separation in Sol–Gel Process. J Catal 200:197–202CrossRef Takahashi R, Sato S, Sodesawa T, Yabuki M (2001) Silica–Alumina Catalyst with Bimodal Pore Structure Prepared by Phase Separation in Sol–Gel Process. J Catal 200:197–202CrossRef
6.
go back to reference Yabuki M, Takahashi R, Sato S, Sodesawa T, Ogura K (2002) Silica–alumina catalysts prepared in sol–gel process of TEOS with organic additives. Phys Chem Chem Phys 4:4830–4837CrossRef Yabuki M, Takahashi R, Sato S, Sodesawa T, Ogura K (2002) Silica–alumina catalysts prepared in sol–gel process of TEOS with organic additives. Phys Chem Chem Phys 4:4830–4837CrossRef
7.
go back to reference Takahashi R, Sato S, Tomiyama S, Ohashi T, Nakamura N (2007) Pore structure control in Ni/SiO2 catalysts with both macropores and mesopores. Microporous Mesoporous Mater 98:107–114CrossRef Takahashi R, Sato S, Tomiyama S, Ohashi T, Nakamura N (2007) Pore structure control in Ni/SiO2 catalysts with both macropores and mesopores. Microporous Mesoporous Mater 98:107–114CrossRef
8.
go back to reference Ishihara A, Negura H, Hashimoto T, Nasu H (2010) Catalytic properties of amorphous silica-alumina prepared using malic acid as a matrix in catalytic cracking of n-dodecane. Appl Catal A: Gen 388:68–76CrossRef Ishihara A, Negura H, Hashimoto T, Nasu H (2010) Catalytic properties of amorphous silica-alumina prepared using malic acid as a matrix in catalytic cracking of n-dodecane. Appl Catal A: Gen 388:68–76CrossRef
9.
go back to reference Sarazen M, Doskocil E, Iglesia E (2016) Catalysis on solid acids: Mechanism and catalyst descriptors in oligomerization reactions of light alkenes. J Catal 344:553–569CrossRef Sarazen M, Doskocil E, Iglesia E (2016) Catalysis on solid acids: Mechanism and catalyst descriptors in oligomerization reactions of light alkenes. J Catal 344:553–569CrossRef
10.
go back to reference Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S, Katoh H, Sunazuka H, Nakayama R, Kuroyanagi T (1993) Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene. Ind Eng Chem Res 32:3112–3116CrossRef Ohkita H, Nishiyama R, Tochihara Y, Mizushima T, Kakuta N, Morioka Y, Ueno A, Namiki Y, Tanifuji S, Katoh H, Sunazuka H, Nakayama R, Kuroyanagi T (1993) Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene. Ind Eng Chem Res 32:3112–3116CrossRef
11.
go back to reference Kim Y, Jung K, Park E (2011) Gas-phase dehydration of glycerol over silica–alumina catalysts. Appl Catal B: Environ 107:177–187CrossRef Kim Y, Jung K, Park E (2011) Gas-phase dehydration of glycerol over silica–alumina catalysts. Appl Catal B: Environ 107:177–187CrossRef
12.
go back to reference Kumbhalkar M, Buchanan S, Huber G, Dumesic J (2017) Ring Opening of Biomass-Derived Cyclic Ethers to Dienes over Silica/Alumina. ACS Catal 7:5248–5256CrossRef Kumbhalkar M, Buchanan S, Huber G, Dumesic J (2017) Ring Opening of Biomass-Derived Cyclic Ethers to Dienes over Silica/Alumina. ACS Catal 7:5248–5256CrossRef
13.
go back to reference Segawa A, Ichijo T, Kimura N, Tsuruta K, Yoshida N, Okamoto M (2020) 1,3-Butadiene Production by Crotyl Alcohol Dehydration over Solid Acids and Catalyst Deactivation by Water Adsorption. J Jpn Petro Inst 63:70–78CrossRef Segawa A, Ichijo T, Kimura N, Tsuruta K, Yoshida N, Okamoto M (2020) 1,3-Butadiene Production by Crotyl Alcohol Dehydration over Solid Acids and Catalyst Deactivation by Water Adsorption. J Jpn Petro Inst 63:70–78CrossRef
14.
go back to reference Matsumoto Y, Mita L, Hashimoto K, Tokoroyama T (1995) Preparation of silica-alumina catalyst by the sol-gel method and its activity for the Diels-Alder reaction of isoprene and acrylaldehyde. Appl Catal A: Gen 131:L1–L6CrossRef Matsumoto Y, Mita L, Hashimoto K, Tokoroyama T (1995) Preparation of silica-alumina catalyst by the sol-gel method and its activity for the Diels-Alder reaction of isoprene and acrylaldehyde. Appl Catal A: Gen 131:L1–L6CrossRef
15.
go back to reference Marczewski M, Kominiak M, Dul M, Marczewska H (2016) The role of butylbenzene carbenium ions in the acid catalyzed cracking of polystyrene. Transformation of n-butylbenzene, sec-butylbenzene, iso-butylbenzene, tert-butylbenzene, 4-phenyl-1-butene, n-propylbenzene and n-hexylbenzene over silicaalumina and alumina acid catalysts React Kinet Mech. Cat 119:107–120 Marczewski M, Kominiak M, Dul M, Marczewska H (2016) The role of butylbenzene carbenium ions in the acid catalyzed cracking of polystyrene. Transformation of n-butylbenzene, sec-butylbenzene, iso-butylbenzene, tert-butylbenzene, 4-phenyl-1-butene, n-propylbenzene and n-hexylbenzene over silicaalumina and alumina acid catalysts React Kinet Mech. Cat 119:107–120
16.
go back to reference Xu L, Bao X, Lv M, Duan L, Liu Z (2014) Effect of Aluminium Content on the Structural, Acidic and Catalytic Properties of Mesoporous Aluminosilicate Materials. Asian J Chem 26:7315–7317CrossRef Xu L, Bao X, Lv M, Duan L, Liu Z (2014) Effect of Aluminium Content on the Structural, Acidic and Catalytic Properties of Mesoporous Aluminosilicate Materials. Asian J Chem 26:7315–7317CrossRef
17.
go back to reference Xu L, Liu Z, Li Z, Liu J, Ma Y, Guan J, Kan Q (2011) Non-crystalline mesoporous aluminosilicates catalysts: Synthesis, characterization and catalytic applications. J Non-Cryst Solid 357:1335–1341CrossRef Xu L, Liu Z, Li Z, Liu J, Ma Y, Guan J, Kan Q (2011) Non-crystalline mesoporous aluminosilicates catalysts: Synthesis, characterization and catalytic applications. J Non-Cryst Solid 357:1335–1341CrossRef
18.
go back to reference Tanabe K., Misono M., Ono Y. (1989) NEW SOLID ACIDS AND BASES their catalytic properties. Kodansha, Tokyo Tanabe K., Misono M., Ono Y. (1989) NEW SOLID ACIDS AND BASES their catalytic properties. Kodansha, Tokyo
19.
go back to reference Sato S, Morimoto Y, Takatsuka T, Hashimoto H (1986) Matrix Pore Structure and Bottom Cracking Capability of Residue FCC Catalysts. J Jpn Pet Inst 29:60–65CrossRef Sato S, Morimoto Y, Takatsuka T, Hashimoto H (1986) Matrix Pore Structure and Bottom Cracking Capability of Residue FCC Catalysts. J Jpn Pet Inst 29:60–65CrossRef
20.
go back to reference Larabi C, Norsic S, Khrouz L, Boyron O, Szeto K, Lucas C, Taoufik M, Mallmann A (2020) Oxide-Supported Titanium Catalysts: Structure–Activity Relationship in Heterogeneous Catalysis, with the Choice of Support as a Key Step. Organometallics 39:4608–4617CrossRef Larabi C, Norsic S, Khrouz L, Boyron O, Szeto K, Lucas C, Taoufik M, Mallmann A (2020) Oxide-Supported Titanium Catalysts: Structure–Activity Relationship in Heterogeneous Catalysis, with the Choice of Support as a Key Step. Organometallics 39:4608–4617CrossRef
21.
go back to reference Jeon M, Mutairi A, Jung H, Hong I, An J, Park C, Kim D, Jeon Y, Marafi A, Ma X, Park J (2020) Molecular Characteristics of Light Cycle Oil Hydrodesulfurization over Silica–Alumina-Supported NiMo Catalysts. ACS Omega 5:29746–29754CrossRef Jeon M, Mutairi A, Jung H, Hong I, An J, Park C, Kim D, Jeon Y, Marafi A, Ma X, Park J (2020) Molecular Characteristics of Light Cycle Oil Hydrodesulfurization over Silica–Alumina-Supported NiMo Catalysts. ACS Omega 5:29746–29754CrossRef
22.
go back to reference Kubicek N, Vaudry F, Chiche B, Hudec P, Renzo F, Schulz P, Fajula F (1998) Stabilization of zeolite beta for fcc application by embedding in amorphous matrix. Appl Catal A: Gen 175:159–171CrossRef Kubicek N, Vaudry F, Chiche B, Hudec P, Renzo F, Schulz P, Fajula F (1998) Stabilization of zeolite beta for fcc application by embedding in amorphous matrix. Appl Catal A: Gen 175:159–171CrossRef
23.
go back to reference Corma A, Martinez A, Pergher S, Peratello S, Perego C, Bellusi G (1997) Global overview of research in catalysis Norway. Appl Catal A: Gen 152:107–125CrossRef Corma A, Martinez A, Pergher S, Peratello S, Perego C, Bellusi G (1997) Global overview of research in catalysis Norway. Appl Catal A: Gen 152:107–125CrossRef
24.
go back to reference Rajagopalan K, Habib E (1992) Understand FCC matrix technology. Hydrocarbon Process 71:43 Rajagopalan K, Habib E (1992) Understand FCC matrix technology. Hydrocarbon Process 71:43
25.
go back to reference Climent M, Corma A, Iborra S, Navarro M, Primo J (1996) Use of Mesoporous MCM-41 Aluminosilicates as Catalysts in the Production of Fine Chemicals: Preparation of Dimethylacetals. J Catal 161:783–78CrossRef Climent M, Corma A, Iborra S, Navarro M, Primo J (1996) Use of Mesoporous MCM-41 Aluminosilicates as Catalysts in the Production of Fine Chemicals: Preparation of Dimethylacetals. J Catal 161:783–78CrossRef
26.
go back to reference Ishihara A, Nakajima K, Hirado M, Hashimoto T, Nasu H (2011) Novel Method for Generating Large Mesopores in an Amorphous Silica–Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Catalytic Cracking Properties as a Catalyst Matrix. Chem Lett 40:558–560CrossRef Ishihara A, Nakajima K, Hirado M, Hashimoto T, Nasu H (2011) Novel Method for Generating Large Mesopores in an Amorphous Silica–Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Catalytic Cracking Properties as a Catalyst Matrix. Chem Lett 40:558–560CrossRef
27.
go back to reference Tanabe K, Ishiya C, Matsuzaki I, Ichikawa I, Hattori H (1972) Acidic Property and Catalytic Activity of TiO2·ZnO. Bull Chem Soc Jpn 45:47–51CrossRef Tanabe K, Ishiya C, Matsuzaki I, Ichikawa I, Hattori H (1972) Acidic Property and Catalytic Activity of TiO2·ZnO. Bull Chem Soc Jpn 45:47–51CrossRef
28.
go back to reference Brunauer S, Emmett P, Teller E (1938) Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 60:309–319CrossRef Brunauer S, Emmett P, Teller E (1938) Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 60:309–319CrossRef
29.
go back to reference Dollomore D, Heal G (1964) An improved method for the calculation of pore size distribution from adsorption data. J Appl Chem 14:109–114CrossRef Dollomore D, Heal G (1964) An improved method for the calculation of pore size distribution from adsorption data. J Appl Chem 14:109–114CrossRef
30.
go back to reference Takahashi R, Sato S, Sodesawa T, Suzuki K, Matsumoto T, Nakanishi K, Soga N (2001) Phase Separation in Sol–Gel Process of Alkoxide-Derived Silica-Zirconia in the Presence of Polyethylene Oxide. J Am Ceram Soc 84:1968–1976CrossRef Takahashi R, Sato S, Sodesawa T, Suzuki K, Matsumoto T, Nakanishi K, Soga N (2001) Phase Separation in Sol–Gel Process of Alkoxide-Derived Silica-Zirconia in the Presence of Polyethylene Oxide. J Am Ceram Soc 84:1968–1976CrossRef
31.
go back to reference Nakanishi K (1997) Pore Structure Control of Silica Gels Based on Phase Separation. J Porous Mater 4:67–112CrossRef Nakanishi K (1997) Pore Structure Control of Silica Gels Based on Phase Separation. J Porous Mater 4:67–112CrossRef
32.
go back to reference Nakamura N, Takahashi R, Sato S, Sodesawa T, Yoshida S (2000) Ni/SiO2 catalyst with hierarchical pore structure prepared by phase separation in sol–gel process. Phys Chem Chem Phys 2:4983–4990CrossRef Nakamura N, Takahashi R, Sato S, Sodesawa T, Yoshida S (2000) Ni/SiO2 catalyst with hierarchical pore structure prepared by phase separation in sol–gel process. Phys Chem Chem Phys 2:4983–4990CrossRef
33.
go back to reference Takahashi R, Sato S, Sodesawa T, Nakamura N, Tomiyama S, Kosugi T, Yoshida S (2001) Nanosize Ni/SiO2 Catalyst Prepared by Homogeneous Precipitation in Wet Silica Gel. J Nanosci Nanotechnol 1:169–176CrossRef Takahashi R, Sato S, Sodesawa T, Nakamura N, Tomiyama S, Kosugi T, Yoshida S (2001) Nanosize Ni/SiO2 Catalyst Prepared by Homogeneous Precipitation in Wet Silica Gel. J Nanosci Nanotechnol 1:169–176CrossRef
34.
go back to reference Takahashi R, Sato S, Sodesawa T, Shizukuishi M, Morofuji K, Ogura K (2005) Change in local coordination structure of aluminum cations in silica–alumina solution during coprecipitation. J Non-Cryst Solids 351:826–832CrossRef Takahashi R, Sato S, Sodesawa T, Shizukuishi M, Morofuji K, Ogura K (2005) Change in local coordination structure of aluminum cations in silica–alumina solution during coprecipitation. J Non-Cryst Solids 351:826–832CrossRef
Metadata
Title
Preparation of meso-macro bimodal porous amorphous silica-alumina as an acidic catalyst
Authors
Maki Inoue
Ryoji Takahashi
Fumiya Sato
Publication date
11-11-2022
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2022
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-022-05969-9

Other articles of this Issue 3/2022

Journal of Sol-Gel Science and Technology 3/2022 Go to the issue

Invited Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Photomechanical organosiloxane films derived from azobenzene-modified di- and tri-alkoxysilanes

Invited Paper: Fundamentals of sol-gel and hybrid materials processing

Investigation of local structures of silicon oxynitride glasses prepared from aerogels

Invited Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications

Redox-induced dual optical switching of CaTiO3:Pr3+ phosphor nanoparticles synthesized by sol–gel method

Invited Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Colloidal dispersion of chiral layered hydroxide salt (LHS) nanocrystals exhibiting chiroptical response

Premium Partners