Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015

Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting

Authors: B. Krishnan, S. Shaji, R. Ernesto Ornelas

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing energy demand and the limitations of the existing technologies due to the scarcity, cost and toxicity of the materials urge the researchers to hunt for efficient thin film solar cells based on earth-abundant, inexpensive and less toxic materials. For a decade, binary and ternary antimony based sulfides have gained attention due to their possible applications in solar cells. This interest is the basis of this review. In this review article, we describe basic properties of copper antimony sulfide (CuSbS2) thin films to investigate their photovoltaic applications. A detailed description of the preparation methods, studies on morphologies and optoelectronic properties based on published work, including our experience are presented. A systematic review is done to demonstrate emerging interest in the photovoltaic performance of this compound. This review gives an in depth discussion on the structure, morphology, optical and electrical properties of copper antimony sulfide thin films.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007)CrossRef M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007)CrossRef
2.
go back to reference A.D. Compaan, Photovoltaics: clean power for the 21st century. Sol. Energy Mater. Sol. Cells 90(15), 2170–2180 (2006)CrossRef A.D. Compaan, Photovoltaics: clean power for the 21st century. Sol. Energy Mater. Sol. Cells 90(15), 2170–2180 (2006)CrossRef
3.
go back to reference V. Awasthi et al., Growth and characterizations of dual ion beam sputtered CIGS thin films for photovoltaic applications. J. Mater. Sci. Mater. Electron. 25(7), 3069–3076 (2014)CrossRef V. Awasthi et al., Growth and characterizations of dual ion beam sputtered CIGS thin films for photovoltaic applications. J. Mater. Sci. Mater. Electron. 25(7), 3069–3076 (2014)CrossRef
4.
go back to reference X. Huo et al., Comparison between the effects of CdCl2 heat treatment on CdTe films prepared by RF magnetron sputtering and close spaced sublimation methods. J. Mater. Sci. Mater. Electron. 24(7), 2479–2484 (2013)CrossRef X. Huo et al., Comparison between the effects of CdCl2 heat treatment on CdTe films prepared by RF magnetron sputtering and close spaced sublimation methods. J. Mater. Sci. Mater. Electron. 24(7), 2479–2484 (2013)CrossRef
5.
go back to reference M.D.G. Potter et al., Effect of interdiffusion and impurities on thin film CdTe/CdS photovoltaic junctions. J. Mater. Sci. Mater. Electron. 11(7), 525–530 (2000)CrossRef M.D.G. Potter et al., Effect of interdiffusion and impurities on thin film CdTe/CdS photovoltaic junctions. J. Mater. Sci. Mater. Electron. 11(7), 525–530 (2000)CrossRef
6.
go back to reference X. He et al., Quaternary co-electrodeposition of the Cu2ZnSnS4 films as potential solar cell absorbers. J. Mater. Sci. Mater. Electron. 24(2), 572–575 (2012)CrossRef X. He et al., Quaternary co-electrodeposition of the Cu2ZnSnS4 films as potential solar cell absorbers. J. Mater. Sci. Mater. Electron. 24(2), 572–575 (2012)CrossRef
7.
go back to reference L. Yu, A. Zunger, Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108(6), 068701 (2012)CrossRef L. Yu, A. Zunger, Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108(6), 068701 (2012)CrossRef
8.
go back to reference Y. Fadhli, A. Rabhi, M. Kanzari, Effect of annealing time and substrates nature on the physical properties of CuSbS2 thin films. J. Mater. Sci. Mater. Electron. 25(11), 4767–4773 (2014)CrossRef Y. Fadhli, A. Rabhi, M. Kanzari, Effect of annealing time and substrates nature on the physical properties of CuSbS2 thin films. J. Mater. Sci. Mater. Electron. 25(11), 4767–4773 (2014)CrossRef
9.
go back to reference R.E. Ornelas-Acosta et al., CuSbS2 thin films by heating Sb2S3/Cu layers for PV applications. J. Mater. Sci. Mater. Electron. 25(10), 4356–4362 (2014)CrossRef R.E. Ornelas-Acosta et al., CuSbS2 thin films by heating Sb2S3/Cu layers for PV applications. J. Mater. Sci. Mater. Electron. 25(10), 4356–4362 (2014)CrossRef
10.
go back to reference K. Ramasamy et al., Copper antimony sulfide (CuSbS2) mesocrystals: a potential counter electrode material for dye-sensitized solar cells. Mater. Lett. 124, 227–230 (2014)CrossRef K. Ramasamy et al., Copper antimony sulfide (CuSbS2) mesocrystals: a potential counter electrode material for dye-sensitized solar cells. Mater. Lett. 124, 227–230 (2014)CrossRef
11.
go back to reference A.C. Rastogi, N.R. Janardhana, Properties of CuSbS2 thin films electrodeposited from ionic liquids as p-type absorber for photovoltaic solar cells. Thin Solid Films 565, 285–292 (2014)CrossRef A.C. Rastogi, N.R. Janardhana, Properties of CuSbS2 thin films electrodeposited from ionic liquids as p-type absorber for photovoltaic solar cells. Thin Solid Films 565, 285–292 (2014)CrossRef
12.
go back to reference B. Yang et al., CuSbS2as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26(10), 3135–3143 (2014)CrossRef B. Yang et al., CuSbS2as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26(10), 3135–3143 (2014)CrossRef
13.
go back to reference S.Y. Hong et al., Synthesis of SnS2/SnS fullerene-like nanoparticles: a superlattice with polyhedral shape. J. Am. Chem. Soc. 125(34), 10470–10474 (2003)CrossRef S.Y. Hong et al., Synthesis of SnS2/SnS fullerene-like nanoparticles: a superlattice with polyhedral shape. J. Am. Chem. Soc. 125(34), 10470–10474 (2003)CrossRef
14.
go back to reference S. Sohila et al., Synthesis and characterization of SnS/ZnO nanocomposite by chemical method. J. Mater. Sci. Mater. Electron. 24(12), 4807–4811 (2013)CrossRef S. Sohila et al., Synthesis and characterization of SnS/ZnO nanocomposite by chemical method. J. Mater. Sci. Mater. Electron. 24(12), 4807–4811 (2013)CrossRef
15.
go back to reference J. Xu, Y. Yang, Z. Xie, Fabrications of SnS thin films and SnS-based heterojunctions on flexible polyimide substrates. J. Mater. Sci. Mater. Electron. 25(7), 3028–3033 (2014)CrossRef J. Xu, Y. Yang, Z. Xie, Fabrications of SnS thin films and SnS-based heterojunctions on flexible polyimide substrates. J. Mater. Sci. Mater. Electron. 25(7), 3028–3033 (2014)CrossRef
16.
go back to reference H. Guan et al., Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. J. Mater. Sci. Mater. Electron. 24(5), 1490–1494 (2013)CrossRef H. Guan et al., Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. J. Mater. Sci. Mater. Electron. 24(5), 1490–1494 (2013)CrossRef
17.
go back to reference N.R. Mathews et al., Formation of Cu2SnS3 thin film by the heat treatment of electrodeposited SnS–Cu layers. J. Mater. Sci. Mater. Electron. 24(10), 4060–4067 (2013)CrossRef N.R. Mathews et al., Formation of Cu2SnS3 thin film by the heat treatment of electrodeposited SnS–Cu layers. J. Mater. Sci. Mater. Electron. 24(10), 4060–4067 (2013)CrossRef
18.
go back to reference Z. Lan et al., Influences of solvents on morphology, light absorbing ability and photovoltaic performance of Sb2S3-sensitized TiO2 photoanodes by chemical bath deposition method. J. Mater. Sci. Mater. Electron. 25(2), 673–677 (2013)CrossRef Z. Lan et al., Influences of solvents on morphology, light absorbing ability and photovoltaic performance of Sb2S3-sensitized TiO2 photoanodes by chemical bath deposition method. J. Mater. Sci. Mater. Electron. 25(2), 673–677 (2013)CrossRef
19.
go back to reference M. Kumar, C. Persson, CuSbS2 and CuBiS2 as potential absorber materials for thin-film solar cells. J. Renew Sustain Energy 5(3), 031616 (2013)CrossRef M. Kumar, C. Persson, CuSbS2 and CuBiS2 as potential absorber materials for thin-film solar cells. J. Renew Sustain Energy 5(3), 031616 (2013)CrossRef
20.
go back to reference J.T. Dufton et al., Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys. Chem. Chem. Phys. 14(20), 7229–7233 (2012)CrossRef J.T. Dufton et al., Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys. Chem. Chem. Phys. 14(20), 7229–7233 (2012)CrossRef
21.
go back to reference L. Yu et al., Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3(1), 43–48 (2013)CrossRef L. Yu et al., Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3(1), 43–48 (2013)CrossRef
22.
go back to reference A. Rabhi, M. Kanzari, B. Rezig, Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films. Mater. Lett. 62(20), 3576–3578 (2008)CrossRef A. Rabhi, M. Kanzari, B. Rezig, Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films. Mater. Lett. 62(20), 3576–3578 (2008)CrossRef
23.
go back to reference A. Rabhi, M. Kanzari, B. Rezig, Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method. Thin Solid Films 517(7), 2477–2480 (2009)CrossRef A. Rabhi, M. Kanzari, B. Rezig, Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method. Thin Solid Films 517(7), 2477–2480 (2009)CrossRef
24.
go back to reference D. Colombara et al., Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors. Thin Solid Films 519(21), 7438–7443 (2011)CrossRef D. Colombara et al., Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors. Thin Solid Films 519(21), 7438–7443 (2011)CrossRef
25.
go back to reference A.W. Welch et al., Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol. Energy Mater. Sol. Cells 132, 499–506 (2015)CrossRef A.W. Welch et al., Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol. Energy Mater. Sol. Cells 132, 499–506 (2015)CrossRef
26.
go back to reference W. Septina et al., Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550, 700–704 (2014)CrossRef W. Septina et al., Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550, 700–704 (2014)CrossRef
27.
go back to reference Z. Lan et al., Influences of solvents on morphology, light absorbing ability and photovoltaic performance of Sb2S3-sensitized TiO2 photoanodes by chemical bath deposition method. J. Mater. Sci. Mater. Electron. 25(2), 673–677 (2014)CrossRef Z. Lan et al., Influences of solvents on morphology, light absorbing ability and photovoltaic performance of Sb2S3-sensitized TiO2 photoanodes by chemical bath deposition method. J. Mater. Sci. Mater. Electron. 25(2), 673–677 (2014)CrossRef
28.
go back to reference F. Cui et al., Fabrication and characterization of CuInS2 films by chemical bath deposition in acid conditions. J. Mater. Sci. Mater. Electron. 20(7), 609–613 (2009)CrossRef F. Cui et al., Fabrication and characterization of CuInS2 films by chemical bath deposition in acid conditions. J. Mater. Sci. Mater. Electron. 20(7), 609–613 (2009)CrossRef
29.
go back to reference M.T.S. Nair, Chemically deposited Sb[sub 2]S[sub 3] and Sb[sub 2]S[sub 3]-CuS thin films. J. Electrochem. Soc. 145(6), 2113 (1998)CrossRef M.T.S. Nair, Chemically deposited Sb[sub 2]S[sub 3] and Sb[sub 2]S[sub 3]-CuS thin films. J. Electrochem. Soc. 145(6), 2113 (1998)CrossRef
30.
go back to reference Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, Photovoltaic p-i-n Structure of Sb[sub 2]S[sub 3] and CuSbS[sub 2] absorber films obtained via chemical bath deposition. J. Electrochem. Soc. 152(8), G635 (2005)CrossRef Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, Photovoltaic p-i-n Structure of Sb[sub 2]S[sub 3] and CuSbS[sub 2] absorber films obtained via chemical bath deposition. J. Electrochem. Soc. 152(8), G635 (2005)CrossRef
31.
go back to reference S. Manolache et al., The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films 515(15), 5957–5960 (2007)CrossRef S. Manolache et al., The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films 515(15), 5957–5960 (2007)CrossRef
32.
go back to reference A. Jayatissa et al., Spin coating of transparent zinc oxide films using novel precursor. J. Mater. Sci. Mater. Electron. 20(6), 577–581 (2009)CrossRef A. Jayatissa et al., Spin coating of transparent zinc oxide films using novel precursor. J. Mater. Sci. Mater. Electron. 20(6), 577–581 (2009)CrossRef
33.
go back to reference W. Wang et al., Cu2ZnSnS4 films by paste coating and their optoelectronic properties. J. Mater. Sci. Mater. Electron. 24(11), 4228–4232 (2013)CrossRef W. Wang et al., Cu2ZnSnS4 films by paste coating and their optoelectronic properties. J. Mater. Sci. Mater. Electron. 24(11), 4228–4232 (2013)CrossRef
34.
go back to reference B. Yang et al., CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26(10), 3135–3143 (2014)CrossRef B. Yang et al., CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26(10), 3135–3143 (2014)CrossRef
35.
go back to reference M. Hurtado et al., XPS analysis and structural characterization of CZTS thin films prepared using solution and vacuum based deposition techniques. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, (2014), pp. 0368–0372 M. Hurtado et al., XPS analysis and structural characterization of CZTS thin films prepared using solution and vacuum based deposition techniques. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, (2014), pp. 0368–0372
36.
go back to reference C.J. Hibberd et al., Structural properties of Cu(In, Ga)Se2 thin films prepared from chemically processed precursor layers. Thin Solid Films 517(7), 2235–2239 (2009)CrossRef C.J. Hibberd et al., Structural properties of Cu(In, Ga)Se2 thin films prepared from chemically processed precursor layers. Thin Solid Films 517(7), 2235–2239 (2009)CrossRef
37.
go back to reference C. Garza et al., p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol. Energy Mater. Sol. Cells 95(8), 2001–2005 (2011)CrossRef C. Garza et al., p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol. Energy Mater. Sol. Cells 95(8), 2001–2005 (2011)CrossRef
38.
go back to reference R.E. Ornelas-Acosta et al., Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater. Res. Bull. 61, 215–225 (2015)CrossRef R.E. Ornelas-Acosta et al., Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater. Res. Bull. 61, 215–225 (2015)CrossRef
Metadata
Title
Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting
Authors
B. Krishnan
S. Shaji
R. Ernesto Ornelas
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3092-2

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue