Skip to main content
Top
Published in: Cellulose 2/2016

20-02-2016 | Original Paper

Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing

Authors: G. H. D. Tonoli, K. M. Holtman, G. Glenn, A. S. Fonseca, D. Wood, T. Williams, V. A. Sa, L. Torres, A. Klamczynski, W. J. Orts

Published in: Cellulose | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers by industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate—AD-supernatant) on milled eucalyptus fiber followed by high-shear mixing to obtain cellulose micro/nanofibers. The morphology, crystallinity, and thermal stability of micro/nanofibers obtained by this process were studied. The bacteria population in the AD-supernatant was comprised mostly of Bacteroides graminisolvens and Parabacteroides chartae. The digestate treatment partially removed amorphous components of the pulp fiber thereby decreasing micro/nanofiber diameters and enhancing the crystalline content. The treatment also increased the size of the crystalline cellulose. The morphology and crystallinity results demonstrate the effectiveness of digestate treatments coupled with high-shear mixing as a procedure for the production of micro/nanofibers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alila S, Besbesa I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRef Alila S, Besbesa I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRef
go back to reference Benziman M, Haigler CH, Malcolm Brown R Jr, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci 77(11):6678–6682CrossRef Benziman M, Haigler CH, Malcolm Brown R Jr, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci 77(11):6678–6682CrossRef
go back to reference Bertran MS, Dale BE (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 32:4241–4253CrossRef Bertran MS, Dale BE (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 32:4241–4253CrossRef
go back to reference Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from TEMPO oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRef Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from TEMPO oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRef
go back to reference Bufalino L, Mendes LM, Tonoli GHD, Rodrigues A, Fonseca AS, Cunha PI, Marconcini JM (2014) New products made with lignocellulosic nanofibers from Brazilian amazon forest. IOP Conf. Ser. Mater. Sci. Eng. 64:012012CrossRef Bufalino L, Mendes LM, Tonoli GHD, Rodrigues A, Fonseca AS, Cunha PI, Marconcini JM (2014) New products made with lignocellulosic nanofibers from Brazilian amazon forest. IOP Conf. Ser. Mater. Sci. Eng. 64:012012CrossRef
go back to reference Bufalino L, Sena Neto AR, Tonoli GHD, Fonseca AS, Costa TG, Marconcini JM, Colodette JL, Labory CRG, Mendes LM (2015) How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672CrossRef Bufalino L, Sena Neto AR, Tonoli GHD, Fonseca AS, Costa TG, Marconcini JM, Colodette JL, Labory CRG, Mendes LM (2015) How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672CrossRef
go back to reference Campos A, Correa AC, Cannella D, Teixeira EM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curaua´ and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500CrossRef Campos A, Correa AC, Cannella D, Teixeira EM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curaua´ and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500CrossRef
go back to reference Cao Y, Tan HM (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296CrossRef Cao Y, Tan HM (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296CrossRef
go back to reference Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705:189–193CrossRef Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705:189–193CrossRef
go back to reference Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRef Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRef
go back to reference Chan CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources 8(1):785–794 Chan CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources 8(1):785–794
go back to reference Chassard C, Goumy V, Leclerc M, Del’homme C, Bernalier-Donadille A (2007) Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 61:121–131CrossRef Chassard C, Goumy V, Leclerc M, Del’homme C, Bernalier-Donadille A (2007) Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 61:121–131CrossRef
go back to reference Chassard C, Delmas E, Robert C, Bernalier-Donadille A (2010) The cellulose degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 74:205–213CrossRef Chassard C, Delmas E, Robert C, Bernalier-Donadille A (2010) The cellulose degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 74:205–213CrossRef
go back to reference Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef
go back to reference Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A 40:218–224CrossRef Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A 40:218–224CrossRef
go back to reference Cheng S, Panthapulakkal S, Sain M, Asiri A (2014) Aloe vera Rind cellulose nanofibers-reinforced films. J Appl Polym Sci 131(15):1–9CrossRef Cheng S, Panthapulakkal S, Sain M, Asiri A (2014) Aloe vera Rind cellulose nanofibers-reinforced films. J Appl Polym Sci 131(15):1–9CrossRef
go back to reference Chinga-Carrasco G, Yu Y, Diserud O (2011) Quantitative electron microscopy of cellulose nanofibril Structures from Eucalyptus and Pinus radiata Kraft pulp fibers. Microsc Microanal 17:563–571CrossRef Chinga-Carrasco G, Yu Y, Diserud O (2011) Quantitative electron microscopy of cellulose nanofibril Structures from Eucalyptus and Pinus radiata Kraft pulp fibers. Microsc Microanal 17:563–571CrossRef
go back to reference Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1–2):13–21 Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45(1–2):13–21
go back to reference Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose Part 1: free floating cotton and wood fibres in n-methylmorpholine-n-oxide–water mixtures. Macromol Symp 244:1–18CrossRef Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose Part 1: free floating cotton and wood fibres in n-methylmorpholine-n-oxide–water mixtures. Macromol Symp 244:1–18CrossRef
go back to reference Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, Part III: plant fibres in aqueous systems. Cellulose 15:67–74CrossRef Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, Part III: plant fibres in aqueous systems. Cellulose 15:67–74CrossRef
go back to reference Dasari R, Berson R (2007) The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol 137:289–299 Dasari R, Berson R (2007) The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol 137:289–299
go back to reference Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J 191:22–30CrossRef Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J 191:22–30CrossRef
go back to reference Ezeji TCL, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227CrossRef Ezeji TCL, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227CrossRef
go back to reference Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRef Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRef
go back to reference Fonseca CS, Silva TF, Silva MF, Oliveira IRC, Mendes RF, Hein PRG, Mendes LM, Tonoli GHD (2016) Eucalyptus cellulose micro/nanofibers in extruded fiber-cement composites. Cerne 22(1):1–9 (in press) Fonseca CS, Silva TF, Silva MF, Oliveira IRC, Mendes RF, Hein PRG, Mendes LM, Tonoli GHD (2016) Eucalyptus cellulose micro/nanofibers in extruded fiber-cement composites. Cerne 22(1):1–9 (in press)
go back to reference Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny JM (2014) Nano-biocomposite films with modified cellulose nanocrystals andsynthesized silver nanoparticles. Carbohydr Polym 101:1122–1133CrossRef Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny JM (2014) Nano-biocomposite films with modified cellulose nanocrystals andsynthesized silver nanoparticles. Carbohydr Polym 101:1122–1133CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588CrossRef
go back to reference Guimarães M Jr, Botaro VR, Novack KM, Flauzino Neto WP, Mendes LM, Tonoli GHD (2015a) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J Nanosci Nanotechnol 15:6751–6768CrossRef Guimarães M Jr, Botaro VR, Novack KM, Flauzino Neto WP, Mendes LM, Tonoli GHD (2015a) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J Nanosci Nanotechnol 15:6751–6768CrossRef
go back to reference Guimarães M Jr, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015b) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crops Prod 70:72–83CrossRef Guimarães M Jr, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015b) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crops Prod 70:72–83CrossRef
go back to reference Gupta VK, Pathania D, Singh P, Rathore BS, Chauhan P (2013) Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydr Polym 95:434–440CrossRef Gupta VK, Pathania D, Singh P, Rathore BS, Chauhan P (2013) Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydr Polym 95:434–440CrossRef
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
go back to reference Hassan LM, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205CrossRef Hassan LM, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205CrossRef
go back to reference Hassan LM, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crops Prod 55:102–108CrossRef Hassan LM, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crops Prod 55:102–108CrossRef
go back to reference Hein PRG, Silva JRM, Brancheriau L (2013) Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 6-year-old Eucalyptus urophylla E. grandis. Maderas Cienc y Tecnol Impresa 15:171–182 Hein PRG, Silva JRM, Brancheriau L (2013) Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 6-year-old Eucalyptus urophylla E. grandis. Maderas Cienc y Tecnol Impresa 15:171–182
go back to reference Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRef Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef
go back to reference Hopkins MJ, Englyst HN, Macfarlane S, Furrie E, Macfarlane GT, McBain AJ (2003) Degradation of cross-linked and noncross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69:6354–6360CrossRef Hopkins MJ, Englyst HN, Macfarlane S, Furrie E, Macfarlane GT, McBain AJ (2003) Degradation of cross-linked and noncross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69:6354–6360CrossRef
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980
go back to reference Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37CrossRef
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
go back to reference Kulterer MR, Reichel VE, Kargl R, Kostler S, Sarbova V, Heinze T et al (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22:174911758CrossRef Kulterer MR, Reichel VE, Kargl R, Kostler S, Sarbova V, Heinze T et al (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22:174911758CrossRef
go back to reference Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45CrossRef Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45CrossRef
go back to reference Leja K, Czaczyk K, Myszka K (2011) Biotechnological synthesis of 1,3-propanediol using Clostridium ssp. Afr J Biotechnol 10(54):11093–11101 Leja K, Czaczyk K, Myszka K (2011) Biotechnological synthesis of 1,3-propanediol using Clostridium ssp. Afr J Biotechnol 10(54):11093–11101
go back to reference Lettinga G, Hulshoff Pol LW, Koster IW, Wiegant WM, De Zeeuw WJ, Rinzema A, Grin PC, Roersma RE, Hobma SW (1984) High-rate anaerobic waste-water treatment using the UASB reactor under a wide range of temperature conditions. Biotechnol Genet Eng Rev 2(1):253–284CrossRef Lettinga G, Hulshoff Pol LW, Koster IW, Wiegant WM, De Zeeuw WJ, Rinzema A, Grin PC, Roersma RE, Hobma SW (1984) High-rate anaerobic waste-water treatment using the UASB reactor under a wide range of temperature conditions. Biotechnol Genet Eng Rev 2(1):253–284CrossRef
go back to reference Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef
go back to reference Lima JT, Ribeiro AO, Narciso CRP (2014) Microfibril angle of Eucalyptus grandis wood in relation to the cambial age. Maderas Cienc y Tecnol 16:487–494 Lima JT, Ribeiro AO, Narciso CRP (2014) Microfibril angle of Eucalyptus grandis wood in relation to the cambial age. Maderas Cienc y Tecnol 16:487–494
go back to reference Mansfield SD, Meder R (2003) Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169CrossRef Mansfield SD, Meder R (2003) Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169CrossRef
go back to reference Marichamy S, Mattiasson B (2005) Rapid production of cellulase-free xylanases by solventogenic Clostridia from rumen. Enzyme Microb Technol 37:497–504CrossRef Marichamy S, Mattiasson B (2005) Rapid production of cellulase-free xylanases by solventogenic Clostridia from rumen. Enzyme Microb Technol 37:497–504CrossRef
go back to reference McGavin M, Forsberg CW (1988) Isolation and characterization of endoglucanases 1 and 2 from bacteroides succinogenes S85. J Bacteriol 170(7):2914–2922 McGavin M, Forsberg CW (1988) Isolation and characterization of endoglucanases 1 and 2 from bacteroides succinogenes S85. J Bacteriol 170(7):2914–2922
go back to reference Meyabadi TF, Dadashian F (2012) Optimization of enzymatic hydrolysis of waste cotton fibers for nanoparticles production using response surface methodology. Fibers Polym 13:313–321CrossRef Meyabadi TF, Dadashian F (2012) Optimization of enzymatic hydrolysis of waste cotton fibers for nanoparticles production using response surface methodology. Fibers Polym 13:313–321CrossRef
go back to reference Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E (2010) Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87:2097–2105CrossRef Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E (2010) Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87:2097–2105CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngbllod J (2011) Cellulose nanomaterials review: structure properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngbllod J (2011) Cellulose nanomaterials review: structure properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Moxley GM, Zhu Z, Zhang Y-HP (2008) Efficient sugar release by the cellulose solvent based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56(17):7885–7890CrossRef Moxley GM, Zhu Z, Zhang Y-HP (2008) Efficient sugar release by the cellulose solvent based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56(17):7885–7890CrossRef
go back to reference Nikolajaski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12:920–925CrossRef Nikolajaski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12:920–925CrossRef
go back to reference Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59(8):1901–1907CrossRef Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59(8):1901–1907CrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österbeg M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österbeg M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
go back to reference Page DH, El-Hosseiny F (1974) The birefringence of wood pulp fibres and the thickness of the S1 and S3 layers. Wood Fibre 6(3):186–192 Page DH, El-Hosseiny F (1974) The birefringence of wood pulp fibres and the thickness of the S1 and S3 layers. Wood Fibre 6(3):186–192
go back to reference Panthapulakkal S, Sain M (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plastic Polym Technol 2:9–16 Panthapulakkal S, Sain M (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plastic Polym Technol 2:9–16
go back to reference Paster BJ, Dewhirst FE, Olsen I, Fraser GJ (1994) Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related species. J Bacteriol 176:725–732 Paster BJ, Dewhirst FE, Olsen I, Fraser GJ (1994) Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related species. J Bacteriol 176:725–732
go back to reference Pelissari F, Sobral PA, Menegalli F (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef Pelissari F, Sobral PA, Menegalli F (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef
go back to reference Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood. Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77:28–34CrossRef Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood. Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77:28–34CrossRef
go back to reference Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (review). Appl Biochem Microbiol 38:305–321CrossRef Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (review). Appl Biochem Microbiol 38:305–321CrossRef
go back to reference Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10(4):9–16 Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10(4):9–16
go back to reference Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Kuramae R, Isogai A (2013) TEMPO-Mediated oxidation of Norway spruce and eucalyptus pulps: preparation and characterization of nanofibers and nanofiber dispersions. J Polym Environ 21:207–214CrossRef Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Kuramae R, Isogai A (2013) TEMPO-Mediated oxidation of Norway spruce and eucalyptus pulps: preparation and characterization of nanofibers and nanofiber dispersions. J Polym Environ 21:207–214CrossRef
go back to reference Sankar M, Delagado O, Mattiasson B (2003) Isolation and characterization of solventogenic, cellulase-free xylanolytic Clostridia from cow rumen. Water Sci Technol 4(48):185–188 Sankar M, Delagado O, Mattiasson B (2003) Isolation and characterization of solventogenic, cellulase-free xylanolytic Clostridia from cow rumen. Water Sci Technol 4(48):185–188
go back to reference Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29(10):786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29(10):786–794CrossRef
go back to reference Sharma PR, Varma AJ (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydr Polym 114:339–343CrossRef Sharma PR, Varma AJ (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydr Polym 114:339–343CrossRef
go back to reference Silva LF, Paes JB, Jesus Junior WC, Oliveira JTS, Furtado EL, Alves FR (2014) Deterioration of Eucalyptus spp. wood by xylophagous fungi. Cerne 20(3):393–400CrossRef Silva LF, Paes JB, Jesus Junior WC, Oliveira JTS, Furtado EL, Alves FR (2014) Deterioration of Eucalyptus spp. wood by xylophagous fungi. Cerne 20(3):393–400CrossRef
go back to reference Simmon KE, Mirrett S, Reller LB, Petti CA (2008) Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol 46:1596–1601CrossRef Simmon KE, Mirrett S, Reller LB, Petti CA (2008) Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol 46:1596–1601CrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
go back to reference Siqueira G, Tapin-Lingua S, Bras J, Perez DD, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef Siqueira G, Tapin-Lingua S, Bras J, Perez DD, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
go back to reference Siroky J, Blackburn JS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115CrossRef Siroky J, Blackburn JS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115CrossRef
go back to reference Song Y, Liu C, Lee J, Bolanos M, Vaisanen ML, Finegold SM (2005) ‘Bacteroides goldsteinii sp. nov’. isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527CrossRef Song Y, Liu C, Lee J, Bolanos M, Vaisanen ML, Finegold SM (2005) ‘Bacteroides goldsteinii sp. nov’. isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527CrossRef
go back to reference SCAN standard (1961) C 4:61, Pentosans in pulp. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm SCAN standard (1961) C 4:61, Pentosans in pulp. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm
go back to reference SCAN standard (1962a) C 6:62, Ash in wood and pulp. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm SCAN standard (1962a) C 6:62, Ash in wood and pulp. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm
go back to reference SCAN Standard (1962b) C 7:62, Dichloromethane extract of pulp. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm SCAN Standard (1962b) C 7:62, Dichloromethane extract of pulp. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm
go back to reference SCAN Standard (1977) C 1:77, Kappa number. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm SCAN Standard (1977) C 1:77, Kappa number. Scandinavian Pulp, Paper and Board Testing Committee, Stockholm
go back to reference Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431CrossRef Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431CrossRef
go back to reference Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038CrossRef Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038CrossRef
go back to reference Tan H-Q, Li T-T, Zhu C, Zhang X-Q, Wu M, Zhu X-F (2012) Parabacteroides chartae sp. nov., an obligately anaerobic species from wastewater of a paper mill. Int J Syst Evol Microb 62(11):2613–2617CrossRef Tan H-Q, Li T-T, Zhu C, Zhang X-Q, Wu M, Zhu X-F (2012) Parabacteroides chartae sp. nov., an obligately anaerobic species from wastewater of a paper mill. Int J Syst Evol Microb 62(11):2613–2617CrossRef
go back to reference TAPPI Useful Method (2009) T 203 cm-99: alpha-, beta- and gamma-cellulose in pulp. Technical Association of the Pulp and Paper Industry, Atlanta TAPPI Useful Method (2009) T 203 cm-99: alpha-, beta- and gamma-cellulose in pulp. Technical Association of the Pulp and Paper Industry, Atlanta
go back to reference Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. Food Sci Technol 59(2):1311–1318 Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. Food Sci Technol 59(2):1311–1318
go back to reference Tischer PCSF, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224CrossRef Tischer PCSF, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224CrossRef
go back to reference Tonoli GHD, Joaquim AP, Arsène MA, Bilba K, Savastano H Jr (2007) Performance and durability of cement based composites reinforced with refined sisal pulp. Mater Manuf Proc 22:149–156CrossRef Tonoli GHD, Joaquim AP, Arsène MA, Bilba K, Savastano H Jr (2007) Performance and durability of cement based composites reinforced with refined sisal pulp. Mater Manuf Proc 22:149–156CrossRef
go back to reference Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from Eucaliptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRef Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from Eucaliptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRef
go back to reference Tonoli GHD, Santos SF, Teixeira RS, Pereira-Da-Silva MA, Lahr FAR, Pescatori Silva FH, Savastano H Jr (2013) Effect of eucalyptus pulp refining on the performance and durability of fibre-cement composites. J Trop For Sci 25:400–409 Tonoli GHD, Santos SF, Teixeira RS, Pereira-Da-Silva MA, Lahr FAR, Pescatori Silva FH, Savastano H Jr (2013) Effect of eucalyptus pulp refining on the performance and durability of fibre-cement composites. J Trop For Sci 25:400–409
go back to reference Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41CrossRef Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41CrossRef
go back to reference Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2004) Hydrolysis of cellulose and hemicelluloses. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, Inc., New York, pp 995–1033 Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2004) Hydrolysis of cellulose and hemicelluloses. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, Inc., New York, pp 995–1033
go back to reference Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60CrossRef Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60CrossRef
go back to reference Zuluaga R, Putaux JL, Javier Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59CrossRef Zuluaga R, Putaux JL, Javier Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59CrossRef
Metadata
Title
Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing
Authors
G. H. D. Tonoli
K. M. Holtman
G. Glenn
A. S. Fonseca
D. Wood
T. Williams
V. A. Sa
L. Torres
A. Klamczynski
W. J. Orts
Publication date
20-02-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0890-5

Other articles of this Issue 2/2016

Cellulose 2/2016 Go to the issue