Skip to main content
Top

2023 | OriginalPaper | Chapter

19. QDs-Based Chemiluminescence Biosensors

Authors : Fahimeh Ghavamipour, Reza H. Sajedi

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chemiluminescence (CL) is commonly defined as the emission of light by a molecule as a result of a chemical reaction. CL assay has significant advantages including high sensitivity, no external light source, rapid analysis, easy automation, and convenient operation, which has broad applications in clinical diagnosis, drug analysis, and environmental monitoring. Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most important advances in the rapidly growing world of nanotechnology. QDs are made of semiconductor material with unique tunable optoelectronic properties, as well as physical dimensions, that have attracted multidisciplinary research efforts to advance their potential bioanalytical applications and have been the potential alternatives to CL emitters. Of the semiconductor families investigated to date, II–VI materials have shown the most promise, and consequently, their use in biological applications has predominated. Therefore, this chapter will focus on the advances and applications of II–VI semiconductor materials in the biological sciences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Meng L, Zi-Yue W, C-Y ZHANG. Recent advance in chemiluminescence assay and its biochemical applications. Chin J Anal Chem. 2016;44(12):1934–41.CrossRef Meng L, Zi-Yue W, C-Y ZHANG. Recent advance in chemiluminescence assay and its biochemical applications. Chin J Anal Chem. 2016;44(12):1934–41.CrossRef
2.
go back to reference Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. TrAC Trends Anal Chem. 2010;29(10):1113–26.CrossRef Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. TrAC Trends Anal Chem. 2010;29(10):1113–26.CrossRef
3.
go back to reference Yari A, Karami M. Peroxyoxalate chemiluminescence of 1, 4-dihydroxy-3-methyl-thioxanthone and quenching effect of β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2012;73(1):287–93.CrossRef Yari A, Karami M. Peroxyoxalate chemiluminescence of 1, 4-dihydroxy-3-methyl-thioxanthone and quenching effect of β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2012;73(1):287–93.CrossRef
4.
go back to reference Yang L, Guan G, Wang S, Zhang Z. Nano-anatase-enhanced peroxyoxalate chemiluminescence and its sensing application. J Phys Chem C. 2012;116(5):3356–62.CrossRef Yang L, Guan G, Wang S, Zhang Z. Nano-anatase-enhanced peroxyoxalate chemiluminescence and its sensing application. J Phys Chem C. 2012;116(5):3356–62.CrossRef
5.
go back to reference Zhao S, Liu J, Huang Y, Liu Y-M. Introducing chemiluminescence resonance energy transfer into immunoassay in a microfluidic format for an improved assay sensitivity. Chem Commun. 2012;48(5):699–701.CrossRef Zhao S, Liu J, Huang Y, Liu Y-M. Introducing chemiluminescence resonance energy transfer into immunoassay in a microfluidic format for an improved assay sensitivity. Chem Commun. 2012;48(5):699–701.CrossRef
6.
go back to reference Bi S, Zhao T, Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem Commun. 2012;48(1):106–8.CrossRef Bi S, Zhao T, Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem Commun. 2012;48(1):106–8.CrossRef
7.
go back to reference Zhang L, Zhang Z, Lu C, Lin J-M. Improved chemiluminescence in Fenton-like reaction via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J Phys Chem C. 2012;116(27):14711–6.CrossRef Zhang L, Zhang Z, Lu C, Lin J-M. Improved chemiluminescence in Fenton-like reaction via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J Phys Chem C. 2012;116(27):14711–6.CrossRef
8.
go back to reference Zhou W, Cao Y, Sui D, Lu C. Radical pair-driven luminescence of quantum dots for specific detection of peroxynitrite in living cells. Anal Chem. 2016;88(5):2659–65.CrossRef Zhou W, Cao Y, Sui D, Lu C. Radical pair-driven luminescence of quantum dots for specific detection of peroxynitrite in living cells. Anal Chem. 2016;88(5):2659–65.CrossRef
9.
go back to reference Zhou W, Cao Y, Sui D, Lu C. Turn-on luminescent probes for the real-time monitoring of endogenous hydroxyl radicals in living cells. Angew Chem. 2016;128(13):4308–13.CrossRefADS Zhou W, Cao Y, Sui D, Lu C. Turn-on luminescent probes for the real-time monitoring of endogenous hydroxyl radicals in living cells. Angew Chem. 2016;128(13):4308–13.CrossRefADS
10.
go back to reference Song H, Su Y, Zhang L, Lv Y. Quantum dots-based chemiluminescence probes: an overview. Luminescence. 2019;34(6):530–43.CrossRef Song H, Su Y, Zhang L, Lv Y. Quantum dots-based chemiluminescence probes: an overview. Luminescence. 2019;34(6):530–43.CrossRef
11.
go back to reference Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. Rev Talanta. 2000;51(3):415–39.CrossRef Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. Rev Talanta. 2000;51(3):415–39.CrossRef
12.
go back to reference Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–15.CrossRef Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–15.CrossRef
13.
go back to reference Hines MA, Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B. 1998;102(19):3655–7.CrossRef Hines MA, Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B. 1998;102(19):3655–7.CrossRef
14.
go back to reference Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 1996;100(2):468–71.CrossRef Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 1996;100(2):468–71.CrossRef
15.
go back to reference Tsay JM, Michalet X. New light on quantum dot cytotoxicity. Chem Biol. 2005;12(11):1159–61.CrossRef Tsay JM, Michalet X. New light on quantum dot cytotoxicity. Chem Biol. 2005;12(11):1159–61.CrossRef
16.
go back to reference Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E. 2004;25(1):1–12.CrossRefADS Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E. 2004;25(1):1–12.CrossRefADS
17.
go back to reference Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.CrossRefADS Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.CrossRefADS
18.
go back to reference Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21(1):41–6.CrossRef Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21(1):41–6.CrossRef
19.
go back to reference Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.CrossRefADS Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.CrossRefADS
20.
go back to reference Santra S, Wang K, Tapec R, Tan W. Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt. 2001;6(2):160–6.CrossRef Santra S, Wang K, Tapec R, Tan W. Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt. 2001;6(2):160–6.CrossRef
21.
go back to reference Raab RM, Stephanopoulos G. Dynamics of gene silencing by RNA interference. Biotechnol Bioeng. 2004;88(1):121–32.CrossRef Raab RM, Stephanopoulos G. Dynamics of gene silencing by RNA interference. Biotechnol Bioeng. 2004;88(1):121–32.CrossRef
22.
go back to reference Mei BC, Susumu K, Medintz IL, Mattoussi H. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc. 2009;4(3):412–23.CrossRef Mei BC, Susumu K, Medintz IL, Mattoussi H. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc. 2009;4(3):412–23.CrossRef
23.
go back to reference Stewart MH, Susumu K, Mei BC, Medintz IL, Delehanty JB, Blanco-Canosa JB, et al. Multidentate poly (ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc. 2010;132(28):9804–13.CrossRef Stewart MH, Susumu K, Mei BC, Medintz IL, Delehanty JB, Blanco-Canosa JB, et al. Multidentate poly (ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J Am Chem Soc. 2010;132(28):9804–13.CrossRef
24.
go back to reference Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34.CrossRef Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34.CrossRef
25.
go back to reference Liu J, Li H, Wang W, Xu H, Yang X, Liang J, et al. Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small. 2006;2(8–9):999–1002.CrossRef Liu J, Li H, Wang W, Xu H, Yang X, Liang J, et al. Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small. 2006;2(8–9):999–1002.CrossRef
26.
go back to reference Susumu K, Mei BC, Mattoussi H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc. 2009;4(3):424–36.CrossRef Susumu K, Mei BC, Mattoussi H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc. 2009;4(3):424–36.CrossRef
27.
go back to reference Tan SJ, Jana NR, Gao S, Patra PK, Ying JY. Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem Mater. 2010;22(7):2239–47.CrossRef Tan SJ, Jana NR, Gao S, Patra PK, Ying JY. Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem Mater. 2010;22(7):2239–47.CrossRef
28.
go back to reference Kim S-W, Kim S, Tracy JB, Jasanoff A, Bawendi MG. Phosphine oxide polymer for water-soluble nanoparticles. J Am Chem Soc. 2005;127(13):4556–7.CrossRef Kim S-W, Kim S, Tracy JB, Jasanoff A, Bawendi MG. Phosphine oxide polymer for water-soluble nanoparticles. J Am Chem Soc. 2005;127(13):4556–7.CrossRef
29.
go back to reference Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir. 2006;22(5):2304–10.CrossRef Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir. 2006;22(5):2304–10.CrossRef
30.
go back to reference Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007;129(10):2871–9.CrossRef Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007;129(10):2871–9.CrossRef
31.
go back to reference Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 2004;4(4):703–7.CrossRefADS Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 2004;4(4):703–7.CrossRefADS
32.
go back to reference Wu Y, Chakrabortty S, Gropeanu RA, Wilhelmi J, Xu Y, Er KS, et al. pH-responsive quantum dots via an albumin polymer surface coating. J Am Chem Soc. 2010;132(14):5012–4.CrossRef Wu Y, Chakrabortty S, Gropeanu RA, Wilhelmi J, Xu Y, Er KS, et al. pH-responsive quantum dots via an albumin polymer surface coating. J Am Chem Soc. 2010;132(14):5012–4.CrossRef
33.
go back to reference Rakshit S, Vasudevan S. Resonance energy transfer from β-cyclodextrin-capped ZnO: MgO nanocrystals to included Nile red guest molecules in aqueous media. ACS Nano. 2008;2(7):1473–9.CrossRef Rakshit S, Vasudevan S. Resonance energy transfer from β-cyclodextrin-capped ZnO: MgO nanocrystals to included Nile red guest molecules in aqueous media. ACS Nano. 2008;2(7):1473–9.CrossRef
34.
go back to reference Freeman R, Finder T, Bahshi L, Willner I. β-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett. 2009;9(5):2073–6.CrossRefADS Freeman R, Finder T, Bahshi L, Willner I. β-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett. 2009;9(5):2073–6.CrossRefADS
35.
go back to reference Jin T, Fujii F, Sakata H, Tamura M, Kinjo M. Amphiphilic p-sulfonatocalix (4) arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine. Chem Commun. 2005;34:4300–2.CrossRef Jin T, Fujii F, Sakata H, Tamura M, Kinjo M. Amphiphilic p-sulfonatocalix (4) arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine. Chem Commun. 2005;34:4300–2.CrossRef
36.
go back to reference Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M. Control of the optical properties of quantum dots by surface coating with calix (n) arene carboxylic acids. J Am Chem Soc. 2006;128(29):9288–9.CrossRef Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M. Control of the optical properties of quantum dots by surface coating with calix (n) arene carboxylic acids. J Am Chem Soc. 2006;128(29):9288–9.CrossRef
37.
go back to reference Koole R, Van Schooneveld MM, Hilhorst J, de Mello DC, ʼt Hart DC, Van Blaaderen A, et al. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem Mater. 2008;20(7):2503–12.CrossRef Koole R, Van Schooneveld MM, Hilhorst J, de Mello DC, ʼt Hart DC, Van Blaaderen A, et al. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem Mater. 2008;20(7):2503–12.CrossRef
38.
go back to reference Han R, Yu M, Zheng Q, Wang L, Hong Y, Sha Y. A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir. 2009;25(20):12250–5.CrossRef Han R, Yu M, Zheng Q, Wang L, Hong Y, Sha Y. A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir. 2009;25(20):12250–5.CrossRef
39.
go back to reference Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem. 2002;74(4):841–7.CrossRef Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem. 2002;74(4):841–7.CrossRef
40.
go back to reference Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc. 2002;124(22):6378–82.CrossRef Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc. 2002;124(22):6378–82.CrossRef
41.
go back to reference Wang YA, Li JJ, Chen H, Peng X. Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc. 2002;124(10):2293–8.CrossRef Wang YA, Li JJ, Chen H, Peng X. Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc. 2002;124(10):2293–8.CrossRef
42.
go back to reference Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark. 2008;4(6):307–19.CrossRef Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark. 2008;4(6):307–19.CrossRef
43.
go back to reference Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.CrossRef Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.CrossRef
44.
go back to reference Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe− ZnS quantum dots. J Am Chem Soc. 2003;125(46):13918–9.CrossRef Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe− ZnS quantum dots. J Am Chem Soc. 2003;125(46):13918–9.CrossRef
45.
go back to reference Mahtab R, Harden HH, Murphy CJ. Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”− DNA interactions. J Am Chem Soc. 2000;122(1):14–7.CrossRef Mahtab R, Harden HH, Murphy CJ. Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”− DNA interactions. J Am Chem Soc. 2000;122(1):14–7.CrossRef
46.
go back to reference Motevalian M, Ghavamipour F, Maroufi B, Mirshahi M, Sajedi RH. Mutual effects of protein corona formation on CdTe quantum dots. Anal Biochem. 2020;610:113983.CrossRef Motevalian M, Ghavamipour F, Maroufi B, Mirshahi M, Sajedi RH. Mutual effects of protein corona formation on CdTe quantum dots. Anal Biochem. 2020;610:113983.CrossRef
47.
go back to reference Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun. 2003;302(3):496–501.CrossRef Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun. 2003;302(3):496–501.CrossRef
48.
go back to reference Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.CrossRefADS Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.CrossRefADS
49.
go back to reference Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2(5):1152–65.CrossRef Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2(5):1152–65.CrossRef
50.
go back to reference Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 2004;32(3):e28.CrossRef Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 2004;32(3):e28.CrossRef
51.
go back to reference Pinaud F, King D, Moore H-P, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc. 2004;126(19):6115–23.CrossRef Pinaud F, King D, Moore H-P, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc. 2004;126(19):6115–23.CrossRef
52.
go back to reference Gao X, Chan WCW, Nie S. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt. 2002;7(4):532–7.CrossRef Gao X, Chan WCW, Nie S. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt. 2002;7(4):532–7.CrossRef
53.
go back to reference Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 2006;6(4):800–8.CrossRefADS Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 2006;6(4):800–8.CrossRefADS
54.
go back to reference Bottini M, D’Annibale F, Magrini A, Cerignoli F, Arimura Y, Dawson MI, et al. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine. 2007;2(2):227. Bottini M, D’Annibale F, Magrini A, Cerignoli F, Arimura Y, Dawson MI, et al. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine. 2007;2(2):227.
55.
go back to reference Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC, Prior JAV, et al. Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta. 2012;735:9–22.CrossRef Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC, Prior JAV, et al. Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta. 2012;735:9–22.CrossRef
56.
go back to reference Chen H, Lin L, Li H, Lin J-M. Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev. 2014;263:86–100.CrossRef Chen H, Lin L, Li H, Lin J-M. Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev. 2014;263:86–100.CrossRef
57.
go back to reference Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta. 2018;180:1–11.CrossRef Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta. 2018;180:1–11.CrossRef
58.
go back to reference Wang Z, Li J, Liu B, Hu J, Yao X, Li J. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B. 2005;109(49):23304–11.CrossRef Wang Z, Li J, Liu B, Hu J, Yao X, Li J. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B. 2005;109(49):23304–11.CrossRef
59.
go back to reference Wang Z, Li J, Liu B, Li J. CdTe nanocrystals sensitized chemiluminescence and the analytical application. Talanta. 2009;77(3):1050–6.CrossRef Wang Z, Li J, Liu B, Li J. CdTe nanocrystals sensitized chemiluminescence and the analytical application. Talanta. 2009;77(3):1050–6.CrossRef
60.
go back to reference Guo C, Zeng H, Ding X, He D, Li J, Yang R, et al. Enhanced chemiluminescence of the luminol-K3Fe (CN)6 system by ZnSe quantum dots and its application. J Lumin. 2013;134:888–92.CrossRef Guo C, Zeng H, Ding X, He D, Li J, Yang R, et al. Enhanced chemiluminescence of the luminol-K3Fe (CN)6 system by ZnSe quantum dots and its application. J Lumin. 2013;134:888–92.CrossRef
61.
go back to reference Zhao Y, Zhao S, Huang J, Ye F. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta. 2011;85(5):2650–4.CrossRef Zhao Y, Zhao S, Huang J, Ye F. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta. 2011;85(5):2650–4.CrossRef
62.
go back to reference Kanwal S, Fu X, Su X. Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium (III) detection. Microchim Acta. 2010;169(1–2):167–72.CrossRef Kanwal S, Fu X, Su X. Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium (III) detection. Microchim Acta. 2010;169(1–2):167–72.CrossRef
63.
go back to reference Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed. 2006;45(31):5140–3.CrossRef Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed. 2006;45(31):5140–3.CrossRef
64.
go back to reference Li Z, Wang Y, Zhang G, Xu W, Han Y. Chemiluminescence resonance energy transfer in the luminol–CdTe quantum dots conjugates. J Lumin. 2010;130(6):995–9.CrossRef Li Z, Wang Y, Zhang G, Xu W, Han Y. Chemiluminescence resonance energy transfer in the luminol–CdTe quantum dots conjugates. J Lumin. 2010;130(6):995–9.CrossRef
65.
go back to reference Wang H-Q, Li Y-Q, Wang J-H, Xu Q, Li X-Q, Zhao Y-D. Influence of quantum dot’s quantum yield to chemiluminescent resonance energy transfer. Anal Chim Acta. 2008;610(1):68–73.CrossRef Wang H-Q, Li Y-Q, Wang J-H, Xu Q, Li X-Q, Zhao Y-D. Influence of quantum dot’s quantum yield to chemiluminescent resonance energy transfer. Anal Chim Acta. 2008;610(1):68–73.CrossRef
66.
go back to reference Gámiz-Gracia L, García-Campaña AM, Huertas-Pérez JF, Lara FJ. Chemiluminescence detection in liquid chromatography: applications to clinical, pharmaceutical, environmental and food analysis—a review. Anal Chim Acta. 2009;640(1–2):7–28.CrossRef Gámiz-Gracia L, García-Campaña AM, Huertas-Pérez JF, Lara FJ. Chemiluminescence detection in liquid chromatography: applications to clinical, pharmaceutical, environmental and food analysis—a review. Anal Chim Acta. 2009;640(1–2):7–28.CrossRef
67.
go back to reference Coulet PR, Blum LJ. Bioluminescence/chemiluminescence based sensors. TrAC Trends Anal Chem. 1992;11(2):57–61.CrossRef Coulet PR, Blum LJ. Bioluminescence/chemiluminescence based sensors. TrAC Trends Anal Chem. 1992;11(2):57–61.CrossRef
68.
go back to reference Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435.CrossRefADS Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435.CrossRefADS
69.
go back to reference Baeyens WRG, Schulman SG, Calokerinos AC, Zhao Y, Campana AMG, Nakashima K, et al. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. J Pharm Biomed Anal. 1998;17(6–7):941–53.CrossRef Baeyens WRG, Schulman SG, Calokerinos AC, Zhao Y, Campana AMG, Nakashima K, et al. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. J Pharm Biomed Anal. 1998;17(6–7):941–53.CrossRef
70.
go back to reference Lei J, Ju H. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30(8):1351–9.CrossRef Lei J, Ju H. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends Anal Chem. 2011;30(8):1351–9.CrossRef
71.
go back to reference Baeyens W, Bruggeman J, Lin B. Enhanced chemiluminescence detection of some dansyl amino acids in liquid chromatography. Chromatographia. 1989;27(5–6):191–3.CrossRef Baeyens W, Bruggeman J, Lin B. Enhanced chemiluminescence detection of some dansyl amino acids in liquid chromatography. Chromatographia. 1989;27(5–6):191–3.CrossRef
72.
go back to reference Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125(23):7100–6.CrossRef Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125(23):7100–6.CrossRef
73.
go back to reference Kim S, Fisher B, Eisler H-J, Bawendi M. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc. 2003;125(38):11466–7.CrossRef Kim S, Fisher B, Eisler H-J, Bawendi M. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc. 2003;125(38):11466–7.CrossRef
74.
go back to reference Zhong X, Han M, Dong Z, White TJ, Knoll W. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J Am Chem Soc. 2003;125(28):8589–94. Zhong X, Han M, Dong Z, White TJ, Knoll W. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J Am Chem Soc. 2003;125(28):8589–94.
75.
go back to reference Ghavamipour F, Sajedi RH, Khajeh K. A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots. Microchim Acta. 2018;185(8):376.CrossRef Ghavamipour F, Sajedi RH, Khajeh K. A chemiluminescence-based catalase assay using H2O2-sensitive CdTe quantum dots. Microchim Acta. 2018;185(8):376.CrossRef
76.
go back to reference Orooji Y, Irani-Nezhad MH, Hassandoost R, Khataee A, Pouran SR, Joo SW. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim Acta A Mol Biomol Spectrosc. 2020;234:118272.CrossRef Orooji Y, Irani-Nezhad MH, Hassandoost R, Khataee A, Pouran SR, Joo SW. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim Acta A Mol Biomol Spectrosc. 2020;234:118272.CrossRef
77.
go back to reference Qi Y, He J, Xiu F-R, Yu X, Gao X, Li Y, et al. A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem J. 2019;147:789–96.CrossRef Qi Y, He J, Xiu F-R, Yu X, Gao X, Li Y, et al. A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem J. 2019;147:789–96.CrossRef
78.
go back to reference Li F, Guo L, Hu Y, Li Z, Liu J, He J, et al. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta. 2020;207:120346.CrossRef Li F, Guo L, Hu Y, Li Z, Liu J, He J, et al. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta. 2020;207:120346.CrossRef
79.
go back to reference Hosseini M, Ganjali MR, Vaezi Z, Arabsorkhi B, Dadmehr M, Faridbod F, et al. Selective recognition histidine and tryptophan by enhanced chemiluminescence ZnSe quantum dots. Sensors Actuators B Chem. 2015;210:349–54.CrossRef Hosseini M, Ganjali MR, Vaezi Z, Arabsorkhi B, Dadmehr M, Faridbod F, et al. Selective recognition histidine and tryptophan by enhanced chemiluminescence ZnSe quantum dots. Sensors Actuators B Chem. 2015;210:349–54.CrossRef
80.
go back to reference Khataee A, Hasanzadeh A, Iranifam M, Joo SW. A novel flow-injection chemiluminescence method for determination of baclofen using l-cysteine capped CdS quantum dots. Sensors Actuators B Chem. 2015;215:272–82.CrossRef Khataee A, Hasanzadeh A, Iranifam M, Joo SW. A novel flow-injection chemiluminescence method for determination of baclofen using l-cysteine capped CdS quantum dots. Sensors Actuators B Chem. 2015;215:272–82.CrossRef
81.
go back to reference Su Y, Deng D, Zhang L, Song H, Lv Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay. TrAC Trends Anal Chem. 2016;82:394–411.CrossRef Su Y, Deng D, Zhang L, Song H, Lv Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay. TrAC Trends Anal Chem. 2016;82:394–411.CrossRef
82.
go back to reference Ge S, Zhang C, Yu F, Yan M, Yu J. Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sensors Actuators B Chem. 2011;156(1):222–7.CrossRef Ge S, Zhang C, Yu F, Yan M, Yu J. Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sensors Actuators B Chem. 2011;156(1):222–7.CrossRef
83.
go back to reference Duan H, Li L, Wang X, Wang Y, Li J, Luo C. CdTe quantum dots- luminol for trace-level chemiluminescence sensing of phenacetin based on biological recognition materials. New J Chem. 2016;40(1):458–63.CrossRef Duan H, Li L, Wang X, Wang Y, Li J, Luo C. CdTe quantum dots- luminol for trace-level chemiluminescence sensing of phenacetin based on biological recognition materials. New J Chem. 2016;40(1):458–63.CrossRef
84.
go back to reference Liu J, Chen H, Lin Z, Lin J-M. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem. 2010;82(17):7380–6.CrossRef Liu J, Chen H, Lin Z, Lin J-M. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem. 2010;82(17):7380–6.CrossRef
85.
go back to reference Chen H, Li R, Lin L, Guo G, Lin J-M. Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide–sodium hydrogen carbonate–CdSe/CdS quantum dots system. Talanta. 2010;81(4–5):1688–96.CrossRef Chen H, Li R, Lin L, Guo G, Lin J-M. Determination of l-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide–sodium hydrogen carbonate–CdSe/CdS quantum dots system. Talanta. 2010;81(4–5):1688–96.CrossRef
86.
go back to reference Zhou M, Wang A, Li C, Luo X, Ma Y. Flow-based determination of methionine in pharmaceutical formulations exploiting TGA-capped CdTe quantum dots for enhancing the luminol-KIO4 chemiluminescence. J Lumin. 2017;183:206–11.CrossRef Zhou M, Wang A, Li C, Luo X, Ma Y. Flow-based determination of methionine in pharmaceutical formulations exploiting TGA-capped CdTe quantum dots for enhancing the luminol-KIO4 chemiluminescence. J Lumin. 2017;183:206–11.CrossRef
87.
go back to reference Azizi SN, Shakeri P, Chaichi MJ, Bekhradnia A, Taghavi M, Ghaemy M. The use of imidazolium ionic liquid/copper complex as novel and green catalyst for chemiluminescent detection of folic acid by Mn-doped ZnS nanocrystals. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:482–8.CrossRefADS Azizi SN, Shakeri P, Chaichi MJ, Bekhradnia A, Taghavi M, Ghaemy M. The use of imidazolium ionic liquid/copper complex as novel and green catalyst for chemiluminescent detection of folic acid by Mn-doped ZnS nanocrystals. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:482–8.CrossRefADS
88.
go back to reference Khataee A, Hasanzadeh A, Lotfi R, Joo SW. Enhanced chemiluminescence of carminic acid-permanganate by CdS quantum dots and its application for sensitive quenchometric flow injection assays of cloxacillin. Talanta. 2016;152:171–8.CrossRef Khataee A, Hasanzadeh A, Lotfi R, Joo SW. Enhanced chemiluminescence of carminic acid-permanganate by CdS quantum dots and its application for sensitive quenchometric flow injection assays of cloxacillin. Talanta. 2016;152:171–8.CrossRef
89.
go back to reference Chowdhury ZZ, Ali AE, Khalid K, Ikram R, Rahman M, Sagadevan S, et al. Science and technology roadmap for photocatalytic membrane separation: a potential route for environmental remediation and fouling mitigation. In: Green photocatalytic semiconductors. Cham: Springer; 2022. p. 513–50. Chowdhury ZZ, Ali AE, Khalid K, Ikram R, Rahman M, Sagadevan S, et al. Science and technology roadmap for photocatalytic membrane separation: a potential route for environmental remediation and fouling mitigation. In: Green photocatalytic semiconductors. Cham: Springer; 2022. p. 513–50.
90.
go back to reference Hosseini M, Ganjali MR, Jarrahi A, Vaezi Z, Mizani F, Faridbod F. Enhanced chemiluminescence CdSe quantum dots by histidine and tryptophan. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:629–33.CrossRefADS Hosseini M, Ganjali MR, Jarrahi A, Vaezi Z, Mizani F, Faridbod F. Enhanced chemiluminescence CdSe quantum dots by histidine and tryptophan. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:629–33.CrossRefADS
91.
go back to reference Hosseini M, Ganjali MR, Vaezi Z, Faridbod F, Arabsorkhi B, Sheikhha MH. Selective recognition of dysprosium (III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:116–20.CrossRefADS Hosseini M, Ganjali MR, Vaezi Z, Faridbod F, Arabsorkhi B, Sheikhha MH. Selective recognition of dysprosium (III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:116–20.CrossRefADS
92.
go back to reference Dong Y, Wang J, Peng Y, Chu X, Wang S. Chemiluminescence resonance energy transfer between CdS quantum dots and lucigenin and its sensing application. J Lumin. 2017;181:433–8.CrossRef Dong Y, Wang J, Peng Y, Chu X, Wang S. Chemiluminescence resonance energy transfer between CdS quantum dots and lucigenin and its sensing application. J Lumin. 2017;181:433–8.CrossRef
93.
go back to reference Kang J, Li X, Geng J, Han L, Tang J, Jin Y, et al. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe (CN)6 system. Food Chem. 2012;134(4):2383–8.CrossRef Kang J, Li X, Geng J, Han L, Tang J, Jin Y, et al. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe (CN)6 system. Food Chem. 2012;134(4):2383–8.CrossRef
94.
go back to reference Sun C, Liu B, Li J. Sensitized chemiluminescence of CdTe quantum-dots on Ce (IV)-sulfite and its analytical applications. Talanta. 2008;75(2):447–54.CrossRef Sun C, Liu B, Li J. Sensitized chemiluminescence of CdTe quantum-dots on Ce (IV)-sulfite and its analytical applications. Talanta. 2008;75(2):447–54.CrossRef
95.
go back to reference Fortes PR, Frigerio C, Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG. Cadmium telluride nanocrystals as luminescent sensitizers in flow analysis. Talanta. 2011;84(5):1314–7.CrossRef Fortes PR, Frigerio C, Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG. Cadmium telluride nanocrystals as luminescent sensitizers in flow analysis. Talanta. 2011;84(5):1314–7.CrossRef
96.
go back to reference Zhao S, Huang Y, Shi M, Liu R, Liu Y-M. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem. 2010;82(5):2036–41.CrossRef Zhao S, Huang Y, Shi M, Liu R, Liu Y-M. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem. 2010;82(5):2036–41.CrossRef
97.
go back to reference Niazov A, Freeman R, Girsh J, Willner I. Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzyme conjugates. Sensors. 2011;11(11):10388–97.CrossRefADS Niazov A, Freeman R, Girsh J, Willner I. Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzyme conjugates. Sensors. 2011;11(11):10388–97.CrossRefADS
98.
go back to reference Ghavamipour F, Rahmani H, Shanehsaz M, Khajeh K, Mirshahi M, Sajedi R. Enhanced sensitivity of VEGF detection using catalase-mediated chemiluminescence immunoassay based on CdTe QD/H2O2 system. J Nanobiotechnol. 2020;18:1–10.CrossRef Ghavamipour F, Rahmani H, Shanehsaz M, Khajeh K, Mirshahi M, Sajedi R. Enhanced sensitivity of VEGF detection using catalase-mediated chemiluminescence immunoassay based on CdTe QD/H2O2 system. J Nanobiotechnol. 2020;18:1–10.CrossRef
99.
go back to reference Freeman R, Girsh J, Fang-ju Jou A, Ho JA, Hug T, Dernedde J, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem. 2012;84(14):6192–8.CrossRef Freeman R, Girsh J, Fang-ju Jou A, Ho JA, Hug T, Dernedde J, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem. 2012;84(14):6192–8.CrossRef
100.
go back to reference Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc. 2011;133(30):11597–604.CrossRef Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc. 2011;133(30):11597–604.CrossRef
101.
go back to reference Zhou Z-M, Yu Y, Zhao Y-D. A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst. 2012;137(18):4262–6.CrossRefADS Zhou Z-M, Yu Y, Zhao Y-D. A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst. 2012;137(18):4262–6.CrossRefADS
102.
go back to reference Li X, Li J, Tang J, Kang J, Zhang Y. Study of influence of metal ions on CdTe/H2O2 chemiluminescence. J Lumin. 2008;128(7):1229–34.CrossRef Li X, Li J, Tang J, Kang J, Zhang Y. Study of influence of metal ions on CdTe/H2O2 chemiluminescence. J Lumin. 2008;128(7):1229–34.CrossRef
103.
go back to reference Sheng Z, Han H, Liang J. The behaviors of metal ions in the CdTe quantum dots–H2O2 chemiluminescence reaction and its sensing application. Lumin J Biol Chem Lumin. 2009;24(5):271–5.CrossRef Sheng Z, Han H, Liang J. The behaviors of metal ions in the CdTe quantum dots–H2O2 chemiluminescence reaction and its sensing application. Lumin J Biol Chem Lumin. 2009;24(5):271–5.CrossRef
104.
go back to reference Kanwal S, Traore Z, Zhao C, Su X. Enhancement effect of CdTe quantum dots–IgG bioconjugates on chemiluminescence of luminol–H2O2 system. J Lumin. 2010;130(10):1901–6.CrossRef Kanwal S, Traore Z, Zhao C, Su X. Enhancement effect of CdTe quantum dots–IgG bioconjugates on chemiluminescence of luminol–H2O2 system. J Lumin. 2010;130(10):1901–6.CrossRef
105.
go back to reference Zhang J, Li B. Enhanced chemiluminescence of CdTe quantum dots–H2O2 by horseradish peroxidase-mimicking DNAzyme. Spectrochim Acta A Mol Biomol Spectrosc. 2014;125:228–33.CrossRefADS Zhang J, Li B. Enhanced chemiluminescence of CdTe quantum dots–H2O2 by horseradish peroxidase-mimicking DNAzyme. Spectrochim Acta A Mol Biomol Spectrosc. 2014;125:228–33.CrossRefADS
106.
go back to reference Ghavamipour F, Khajeh K, Sajedi RH. The application of the QDs/H2O2 chemiluminescence system in HRP assay and HRP-based immunoassay. Colloids Surf B Biointerfaces. 2021;206:111942.CrossRef Ghavamipour F, Khajeh K, Sajedi RH. The application of the QDs/H2O2 chemiluminescence system in HRP assay and HRP-based immunoassay. Colloids Surf B Biointerfaces. 2021;206:111942.CrossRef
Metadata
Title
QDs-Based Chemiluminescence Biosensors
Authors
Fahimeh Ghavamipour
Reza H. Sajedi
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_19

Premium Partners