Skip to main content
Top

2023 | OriginalPaper | Chapter

6. Quantenkommunikationsnetze: Entwurf und Simulation

Authors : Riccardo Bassoli, Holger Boche, Christian Deppe, Roberto Ferrara, Frank H. P. Fitzek, Gisbert Janssen, Sajad Saeedinaeeni

Published in: Quantenkommunikationsnetze

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Nach der Beschreibung spezifischer Forschungsbereiche der angewandten Quantenmechanik, wie der Quanteninformationstheorie, der Quantenfehlerkorrektur und des Quantencomputers, werden in diesem Kapitel diese Ergebnisse genutzt und in den größeren Zusammenhang von Quantenkommunikationsnetzen gestellt. Solche Netze erfordern den Einsatz sogenannter Quanten-Repeater, die aus Quanten- und klassischer Hardware bestehen und Quantendestillation und -speicherung durchführen. Als Nächstes werden die Rolle und die Eigenschaften der Verschränkungserzeugung und -verteilung erläutert, mit einer spezifischen Beschreibung des Verschränkungsaustauschs und der Quantennetzcodierung. Die Diskussion über Quantenkommunikationsnetze endet mit einer Darstellung der Quantentheorie der Mehrfachzugriffskanäle und ihrer Beziehung zur Quantenspieltheorie. Schließlich wird das Problem der Simulation und Evaluierung von Quantenkommunikationsnetzen mit Hilfe von Simulatoren auf der Grundlage klassischer Hardware und Software behandelt. Darüber hinaus werden in diesem Kapitel die wichtigsten derzeit verfügbaren Simulatoren, ihre Eigenschaften sowie ihre Vor- und Nachteile aufgeführt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[AFP09]
go back to reference Auletta, G., Fortunato, M., & Parisi, G. (2009). Quantum mechanics (1. Aufl.). Cambridge University Press.CrossRefMATH Auletta, G., Fortunato, M., & Parisi, G. (2009). Quantum mechanics (1. Aufl.). Cambridge University Press.CrossRefMATH
[ATL15]
go back to reference Azuma, K., Tamaki, K., & Lo, H. (2015). All-photonic quantum repeaters. Nature Communications, 6, 6787.CrossRef Azuma, K., Tamaki, K., & Lo, H. (2015). All-photonic quantum repeaters. Nature Communications, 6, 6787.CrossRef
[Bar18]
go back to reference Bartlett, B. (2018). A distributed simulation framework for quantum networks and channels. arXiv:quant-ph/1808.07047 Bartlett, B. (2018). A distributed simulation framework for quantum networks and channels. arXiv:quant-ph/1808.07047
[BDSW96]
go back to reference Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., & Wootters, W. K. (1996). Mixed-state entanglement and quantum error correction. Physical Review A, 54(5), 3824–3851.MathSciNetCrossRefMATH Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., & Wootters, W. K. (1996). Mixed-state entanglement and quantum error correction. Physical Review A, 54(5), 3824–3851.MathSciNetCrossRefMATH
[BvL19]
go back to reference Bergmann, M., & van Loock, P. (2019). Hybrid quantum repeater for qudits. Physical Review A, 99(3), 032349.CrossRef Bergmann, M., & van Loock, P. (2019). Hybrid quantum repeater for qudits. Physical Review A, 99(3), 032349.CrossRef
[Cal17]
go back to reference Caleffi, M. (2017). Optimal routing for quantum networks. IEEE Access, 5, 22299–22312.CrossRef Caleffi, M. (2017). Optimal routing for quantum networks. IEEE Access, 5, 22299–22312.CrossRef
[DSC+19]
go back to reference Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L., Rozpedek, F., Pompili, M., et al. (2019). A link layer protocol for quantum networks. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19 (S. 159–173). Association for Computing Machinery.CrossRef Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L., Rozpedek, F., Pompili, M., et al. (2019). A link layer protocol for quantum networks. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19 (S. 159–173). Association for Computing Machinery.CrossRef
[DW17]
go back to reference Dahlberg, A., & Wehner, S. (2017). SimulaQron – A simulator for developing quantum internet software. arXiv:quant-ph/1712.08032 Dahlberg, A., & Wehner, S. (2017). SimulaQron – A simulator for developing quantum internet software. arXiv:quant-ph/1712.08032
[DNZB20]
go back to reference DiAdamo, S., Nözel, J., Zanger, B., & Mert Beşe, M. (2020). QuNetSim: A software framework for quantum networks. DiAdamo, S., Nözel, J., Zanger, B., & Mert Beşe, M. (2020). QuNetSim: A software framework for quantum networks.
[DiV15]
go back to reference DiVincenzo, D. P. (2015). The memory problem of quantum information processing. Proceedings of the IEEE, 103(8), 1417–1425.CrossRef DiVincenzo, D. P. (2015). The memory problem of quantum information processing. Proceedings of the IEEE, 103(8), 1417–1425.CrossRef
[GI19]
[HSP10]
go back to reference Hammerer, K., Sørensen, A. S., & Polzik, E. S. (2010). Quantum interface between light and atomic ensembles. Reviews of Modern Physics, 82(2), 1041–1093.CrossRef Hammerer, K., Sørensen, A. S., & Polzik, E. S. (2010). Quantum interface between light and atomic ensembles. Reviews of Modern Physics, 82(2), 1041–1093.CrossRef
[HIN+06]
go back to reference Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., & Yamashita, S. (2006). Quantum network coding. In STACS: Annual symposium on theoretical aspects of computer science (Lecture notes in computer science, S. 610–621). Springer. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., & Yamashita, S. (2006). Quantum network coding. In STACS: Annual symposium on theoretical aspects of computer science (Lecture notes in computer science, S. 610–621). Springer.
[IG12]
go back to reference Imre, S., & Gyongyosi, L. (2012). Advanced quantum communications: An engineering approach (1. Aufl.). Wiley-IEEE Press.CrossRefMATH Imre, S., & Gyongyosi, L. (2012). Advanced quantum communications: An engineering approach (1. Aufl.). Wiley-IEEE Press.CrossRefMATH
[JPC+19]
go back to reference Jiang, N., Pu, Y.-F., Chang, W., Li, C., Zhang, S., & Duan, L.-M. (2019). Experimental realization of 105-qubit random access quantum memory. npj Quantum Information, 5, 28.CrossRef Jiang, N., Pu, Y.-F., Chang, W., Li, C., Zhang, S., & Duan, L.-M. (2019). Experimental realization of 105-qubit random access quantum memory. npj Quantum Information, 5, 28.CrossRef
[JBBB19]
go back to reference Jones, T., Brown, A., Bush, I., & Benjamin, S. C. (2019). QuEST and high performance simulation of quantum computers. Scientific Reports, 9, 10736.CrossRef Jones, T., Brown, A., Bush, I., & Benjamin, S. C. (2019). QuEST and high performance simulation of quantum computers. Scientific Reports, 9, 10736.CrossRef
[Kim08]
[LvN+06]
go back to reference Ladd, T. D., van Loock, P., Nemoto, W. J., Munro, K., & Yamamoto, Y. (2006). Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light. New Journal of Physics, 8(9), 184–184.CrossRef Ladd, T. D., van Loock, P., Nemoto, W. J., Munro, K., & Yamamoto, Y. (2006). Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light. New Journal of Physics, 8(9), 184–184.CrossRef
[LALS20]
go back to reference Leditzky, F., Alhejji, M. A., Levin, J., & Smith, G. (2020). Playing games with multiple access channels. Nature Communications, 11(1), 1497.CrossRef Leditzky, F., Alhejji, M. A., Levin, J., & Smith, G. (2020). Playing games with multiple access channels. Nature Communications, 11(1), 1497.CrossRef
[LOW10]
go back to reference Leung, D., Oppenheim, J., & Winter, A. (2010). Quantum network communication – the butterfly and beyond. IEEE Transactions on Information Theory, 56(7), 3478–3490.MathSciNetCrossRefMATH Leung, D., Oppenheim, J., & Winter, A. (2010). Quantum network communication – the butterfly and beyond. IEEE Transactions on Information Theory, 56(7), 3478–3490.MathSciNetCrossRefMATH
[LLY+19]
go back to reference Lu, H., Li, Z., Yin, X., Zhang, R., Fang, X., Li, L., et al. (2019). Quantum network coding for general repeater networks. npj Quantum Inf, 89(5), 1–5. Lu, H., Li, Z., Yin, X., Zhang, R., Fang, X., Li, L., et al. (2019). Quantum network coding for general repeater networks. npj Quantum Inf, 89(5), 1–5.
[Luk03]
go back to reference Lukin, M. D. (2003). Colloquium: Trapping and manipulating photon states in atomic ensembles. Reviews of Modern Physics, 75, 457–472.CrossRef Lukin, M. D. (2003). Colloquium: Trapping and manipulating photon states in atomic ensembles. Reviews of Modern Physics, 75, 457–472.CrossRef
[LST09]
go back to reference Lvovsky, A. I., Sanders, B. C., & Tittel, W. (2009). Optical quantum memory. Nature Photonics, 3, 706714.CrossRef Lvovsky, A. I., Sanders, B. C., & Tittel, W. (2009). Optical quantum memory. Nature Photonics, 3, 706714.CrossRef
[MSNVM18]
go back to reference Matsuo, T., Satoh, T., Nagayama, S., & Van Meter, R. (2018). Analysis of measurement-based quantum network coding over repeater networks under noisy conditions. Physical Review A, 97(6), 062328.CrossRef Matsuo, T., Satoh, T., Nagayama, S., & Van Meter, R. (2018). Analysis of measurement-based quantum network coding over repeater networks under noisy conditions. Physical Review A, 97(6), 062328.CrossRef
[MATN15]
go back to reference Munro, W. J., Azuma, K., Tamaki, K., & Nemoto, K. (2015). Inside quantum repeaters. IEEE Journal of Selected Topics in Quantum Electronics, 21(3), 78–90.CrossRef Munro, W. J., Azuma, K., Tamaki, K., & Nemoto, K. (2015). Inside quantum repeaters. IEEE Journal of Selected Topics in Quantum Electronics, 21(3), 78–90.CrossRef
[MLK+16]
go back to reference Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, M. D., & Jiang, L. (2016). Optimal architectures for long distance quantum communication. Scientific Reports, 6, 20463.CrossRef Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, M. D., & Jiang, L. (2016). Optimal architectures for long distance quantum communication. Scientific Reports, 6, 20463.CrossRef
[Nö19]
go back to reference Nötzel, J. (2019). Entanglement-enabled communication. IEEE Journal on Selected Areas in Information Theory, 1(2), 401–415.CrossRef Nötzel, J. (2019). Entanglement-enabled communication. IEEE Journal on Selected Areas in Information Theory, 1(2), 401–415.CrossRef
[SINVM16]
go back to reference Satoh, T., Ishizaki, K., Nagayama, S., & Van Meter, R. (2016). Analysis of quantum network coding for realistic repeater networks. Physical Review A, 93(3), 032302.CrossRef Satoh, T., Ishizaki, K., Nagayama, S., & Van Meter, R. (2016). Analysis of quantum network coding for realistic repeater networks. Physical Review A, 93(3), 032302.CrossRef
[SLPwL15]
go back to reference Shang, T., Li, J., Pei, Z., & Liu, J. w. (2015). Quantum network coding for general repeater networks. Quantum Information Processing, 14, 3533–3552.MathSciNetCrossRefMATH Shang, T., Li, J., Pei, Z., & Liu, J. w. (2015). Quantum network coding for general repeater networks. Quantum Information Processing, 14, 3533–3552.MathSciNetCrossRefMATH
[SAA+10]
go back to reference Simon, C., Afzelius, M., Appel, J., Boyer de la Giroday, A., Dewhurst, S. J., Gisin, N., et al. (2010). Quantum memories. The European Physical Journal D, 58(1), 1–22.CrossRef Simon, C., Afzelius, M., Appel, J., Boyer de la Giroday, A., Dewhurst, S. J., Gisin, N., et al. (2010). Quantum memories. The European Physical Journal D, 58(1), 1–22.CrossRef
[TAC+10]
go back to reference Tittel, W., Afzelius, M., Chaneliére, T., Cone, R. L., Kröll, S., Moiseev, S. A., & Sellars, M. (2010). Photon-echo quantum memory in solid state systems. Laser & Photonics Reviews, 4(2), 244–267.CrossRef Tittel, W., Afzelius, M., Chaneliére, T., Cone, R. L., Kröll, S., Moiseev, S. A., & Sellars, M. (2010). Photon-echo quantum memory in solid state systems. Laser & Photonics Reviews, 4(2), 244–267.CrossRef
[vLAB+19]
go back to reference van Loock, P., Alt, W., Becher, C., Benson, O., Boche, H., Deppe, C., et al. (2020). Extending quantum links: Modules for fiber- and memory-based quantum repeaters. Advanced Quantum Technologies, 3(11), 1900141. Wiley.CrossRef van Loock, P., Alt, W., Becher, C., Benson, O., Boche, H., Deppe, C., et al. (2020). Extending quantum links: Modules for fiber- and memory-based quantum repeaters. Advanced Quantum Technologies, 3(11), 1900141. Wiley.CrossRef
[vLLS+06]
go back to reference van Loock, P., Ladd, T. D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W. J., et al. (2006). Hybrid quantum repeater using bright coherent light. Physical Review Letters, 96, 240501.CrossRef van Loock, P., Ladd, T. D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W. J., et al. (2006). Hybrid quantum repeater using bright coherent light. Physical Review Letters, 96, 240501.CrossRef
[vLLMN08]
go back to reference van Loock, P., Lütkenhaus, N., Munro, W. J., & Nemoto, K. (2008). Quantum repeaters using coherent-state communication. Physical Review A, 78, 062319.CrossRef van Loock, P., Lütkenhaus, N., Munro, W. J., & Nemoto, K. (2008). Quantum repeaters using coherent-state communication. Physical Review A, 78, 062319.CrossRef
[VLMN09]
go back to reference Van Meter, R., Ladd, T. D., Munro, W. J., & Nemoto, K. (2009). System design for a long-line quantum repeater. IEEE/ACM Transactions on Networking, 17(3), 1002–1013.CrossRef Van Meter, R., Ladd, T. D., Munro, W. J., & Nemoto, K. (2009). System design for a long-line quantum repeater. IEEE/ACM Transactions on Networking, 17(3), 1002–1013.CrossRef
[VNM07]
go back to reference Van Meter, R., Nemoto, K., & Munro, W. (2007). Communication links for distributed quantum computation. IEEE Transactions on Computers, 56(12), 1643–1653.MathSciNetCrossRefMATH Van Meter, R., Nemoto, K., & Munro, W. (2007). Communication links for distributed quantum computation. IEEE Transactions on Computers, 56(12), 1643–1653.MathSciNetCrossRefMATH
[WLZ+19]
go back to reference Wang, Y., Li, J., Zhang, S., Su, K., Zhou, Y., Liao, K., et al. (2019). Efficient quantum memory for single-photon polarization qubits. Nature Photonics, 13, 346–351.CrossRef Wang, Y., Li, J., Zhang, S., Su, K., Zhou, Y., Liao, K., et al. (2019). Efficient quantum memory for single-photon polarization qubits. Nature Photonics, 13, 346–351.CrossRef
[WS14]
go back to reference Wecker, D., & Svore, K. M. (2014). LIQUi–>: A software design architecture and domain-specific language for quantum computing. arXiv:quant-ph/1402.4467 Wecker, D., & Svore, K. M. (2014). LIQUi–>: A software design architecture and domain-specific language for quantum computing. arXiv:quant-ph/1402.4467
[WEH18]
[WCK+19]
go back to reference Wu, X., Chung, J., Kolar, A., Wang, E., Zhong, T., Kettimuthu, R., et al. (2019). Simulations of photonic quantum networks for performance analysis and experiment design. In 2019 IEEE/ACM workshop on photonics-optics technology oriented networking, information and computing systems (PHOTONICS) (S. 28–35).CrossRef Wu, X., Chung, J., Kolar, A., Wang, E., Zhong, T., Kettimuthu, R., et al. (2019). Simulations of photonic quantum networks for performance analysis and experiment design. In 2019 IEEE/ACM workshop on photonics-optics technology oriented networking, information and computing systems (PHOTONICS) (S. 28–35).CrossRef
[YCL+17]
go back to reference Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., et al. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343), 1140–1144.CrossRef Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., et al. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343), 1140–1144.CrossRef
Metadata
Title
Quantenkommunikationsnetze: Entwurf und Simulation
Authors
Riccardo Bassoli
Holger Boche
Christian Deppe
Roberto Ferrara
Frank H. P. Fitzek
Gisbert Janssen
Sajad Saeedinaeeni
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-26326-2_6