Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

09-08-2023 | Technical Article

Quantitative Study of W-phase Content in Mg-Zn-Gd-Zr Alloys and Its Effect on Dynamic Recrystallization

Authors: Yuguang Li, Feng Guo, Jing Li, Huisheng Cai

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rare-earth compounds in Mg-Zn-Gd-Zr alloy were quantitatively studied by using phase separation technique, and the effects of rare-earth elements on the formation of compounds during solidification were analyzed, and the effects of W phase and its content on dynamic recrystallization were investigated. The results show that the increase of Gd content can effectively increase the content of W phase in the casting alloy, while the formation of W phase during solidification mainly depends on the ratio of Zn and Gd elements in the residual melt. When the mass ratio of Zn/Gd is less than 0.8, more W phase is produced than I phase. Increasing the mass ratio of Zn/Gd in the residual melt or increasing the content of Gd alone can increase the formation of the W phase. After homogenization, the newborn W phase originates from the decomposition of the I phase, but the amount of the newborn W phase is smaller than that of the decomposition of the I phase. According to the process hardening theory, the critical strain of dynamic recrystallization nucleation decreases with the increase of W phase, which is 0.09411, 0.07321 and 0.05591, respectively. In addition, W phase can promote the formation of recrystallized grains, and the area ratio of recrystallized grains increases from 19.81 to 24.652% with the increase of W phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.G. Jiang, C. Xu, T. Nakata et al., Rare Earth Texture and Improved Ductility in a Mg-Zn-Gd alloy after High-Speed Extrusion, Mater. Sci. Eng. A, 2016, 667(14), p 233–239.CrossRef M.G. Jiang, C. Xu, T. Nakata et al., Rare Earth Texture and Improved Ductility in a Mg-Zn-Gd alloy after High-Speed Extrusion, Mater. Sci. Eng. A, 2016, 667(14), p 233–239.CrossRef
2.
go back to reference H. Miao, H. Huang, S. Fan et al., Nanoscale Precipitations in Deformed Dilute Alloying Mg-Zn-Gd Alloy, Mater. Des., 2020, 196, p 109122.CrossRef H. Miao, H. Huang, S. Fan et al., Nanoscale Precipitations in Deformed Dilute Alloying Mg-Zn-Gd Alloy, Mater. Des., 2020, 196, p 109122.CrossRef
3.
go back to reference S. Spigarelli, M.E. Mehtedi, and M.J.S.M. Regev, Enhanced Plasticity and Creep in an Extruded Mg-Zn-Zr Alloy, Scr. Mater., 2010, 63(6), p 617–620.CrossRef S. Spigarelli, M.E. Mehtedi, and M.J.S.M. Regev, Enhanced Plasticity and Creep in an Extruded Mg-Zn-Zr Alloy, Scr. Mater., 2010, 63(6), p 617–620.CrossRef
4.
go back to reference H. Watanabe, T. Mukai, M. Mabuchi et al., High-Strain-Rate Superplasticity at Low Temperature in a ZK61 Magnesium Alloy Produced by Powder Metallurgy, Scr. Mater., 1999, 41(2), p 209–213.CrossRef H. Watanabe, T. Mukai, M. Mabuchi et al., High-Strain-Rate Superplasticity at Low Temperature in a ZK61 Magnesium Alloy Produced by Powder Metallurgy, Scr. Mater., 1999, 41(2), p 209–213.CrossRef
5.
go back to reference M.R. Barnett, C.H.J. Davies, A.G. Beer, Wrought magnesium alloy: US, 2010. M.R. Barnett, C.H.J. Davies, A.G. Beer, Wrought magnesium alloy: US, 2010.
6.
go back to reference B.L. Mordike and T. Ebert, Magnesium: Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45.CrossRef B.L. Mordike and T. Ebert, Magnesium: Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45.CrossRef
7.
go back to reference Q. Huo, X. Yang, H. Sun et al., Enhancement of Tensile Ductility and Stretch Formability of AZ31 Magnesium Alloy Sheet Processed by Cross-Wavy Bending, J. Alloys Compd., 2013, 581, p 230–235.CrossRef Q. Huo, X. Yang, H. Sun et al., Enhancement of Tensile Ductility and Stretch Formability of AZ31 Magnesium Alloy Sheet Processed by Cross-Wavy Bending, J. Alloys Compd., 2013, 581, p 230–235.CrossRef
8.
go back to reference D.A. Basha, R. Sahara, H. Somekawa et al., Interfacial Segregation Induced by Severe Plastic Deformation in a Mg-Zn-Y Alloy, Scr. Mater., 2016, 124, p 169–173.CrossRef D.A. Basha, R. Sahara, H. Somekawa et al., Interfacial Segregation Induced by Severe Plastic Deformation in a Mg-Zn-Y Alloy, Scr. Mater., 2016, 124, p 169–173.CrossRef
9.
go back to reference A. Singh, Tailoring Microstructure of Mg-Zn-Y Alloys with Quasicrystal and Related Phases for High Mechanical Strength, Sci. Technol. Adv. Mater., 2014, 15(4), p 044803.CrossRefPubMedPubMedCentral A. Singh, Tailoring Microstructure of Mg-Zn-Y Alloys with Quasicrystal and Related Phases for High Mechanical Strength, Sci. Technol. Adv. Mater., 2014, 15(4), p 044803.CrossRefPubMedPubMedCentral
10.
go back to reference T. Tokunaga, M. Ohno, K. Matsuura et al., Coatings on Mg Alloys and Their Mechanical Properties: A Review, J. Mater. Sci. Technol., 2017, 34(7), p 1119–1126.CrossRef T. Tokunaga, M. Ohno, K. Matsuura et al., Coatings on Mg Alloys and Their Mechanical Properties: A Review, J. Mater. Sci. Technol., 2017, 34(7), p 1119–1126.CrossRef
11.
go back to reference B. Song, Q. Yang, T. Zhou et al., Texture Control by {10-12} Twinning to Improve the Formability of Mg Alloys: A Review, J. Mater. Sci. Technol., 2019, 35(10), p 2269–2282.CrossRef B. Song, Q. Yang, T. Zhou et al., Texture Control by {10-12} Twinning to Improve the Formability of Mg Alloys: A Review, J. Mater. Sci. Technol., 2019, 35(10), p 2269–2282.CrossRef
12.
go back to reference Z. Zhang, J.H. Zhang, J. Wang et al., Toward the Development of Mg Alloys with Simultaneously Improved Strength and Ductility by Refining Grain Size via the Deformation Process, Int. J. Miner. Metall. Mater., 2020, 28(1), p 30–45.CrossRef Z. Zhang, J.H. Zhang, J. Wang et al., Toward the Development of Mg Alloys with Simultaneously Improved Strength and Ductility by Refining Grain Size via the Deformation Process, Int. J. Miner. Metall. Mater., 2020, 28(1), p 30–45.CrossRef
13.
go back to reference Y. Liu, J. Wen, H. Yao et al., Enhancing the Corrosion Resistance Performance of Mg-1.8Zn-1.74Gd-0.5Y-0.4Zr Biomaterial via Solution Treatment Process, Materials, 2020, 13(4), p 836.CrossRefPubMedPubMedCentral Y. Liu, J. Wen, H. Yao et al., Enhancing the Corrosion Resistance Performance of Mg-1.8Zn-1.74Gd-0.5Y-0.4Zr Biomaterial via Solution Treatment Process, Materials, 2020, 13(4), p 836.CrossRefPubMedPubMedCentral
14.
go back to reference N. Hort, C.L. Mendis et al., Investigations on Microstructures, Mechanical and Corrosion Properties of Mg-Gd-Zn alloys, Mater. Sci. Eng. A, 2014, 595, p 224–234.CrossRef N. Hort, C.L. Mendis et al., Investigations on Microstructures, Mechanical and Corrosion Properties of Mg-Gd-Zn alloys, Mater. Sci. Eng. A, 2014, 595, p 224–234.CrossRef
15.
go back to reference H. Yu, Y. Hongge, C. Jihua et al., Effects of Minor Gd Addition on Microstructures and Mechanical Properties of the High Strain-Rate Rolled Mg-Zn-Zr alloys, J. Alloys Compd., 2014, 586, p 757–765.CrossRef H. Yu, Y. Hongge, C. Jihua et al., Effects of Minor Gd Addition on Microstructures and Mechanical Properties of the High Strain-Rate Rolled Mg-Zn-Zr alloys, J. Alloys Compd., 2014, 586, p 757–765.CrossRef
16.
go back to reference X. Zhou, Enhanced Strength and Ductility of Mg-Gd-Y-Zr Alloys by Secondary Extrusion, J. Magnes. Alloys, 2013, 1, p 54–63.CrossRef X. Zhou, Enhanced Strength and Ductility of Mg-Gd-Y-Zr Alloys by Secondary Extrusion, J. Magnes. Alloys, 2013, 1, p 54–63.CrossRef
17.
go back to reference X.F. Gu, T. Furuhara, T. Kiguchi et al., On the Atomic Structure of γ″ Phase in Mg-Zn-Gd alloy, Scr. Mater., 2018, 146, p 64–67.CrossRef X.F. Gu, T. Furuhara, T. Kiguchi et al., On the Atomic Structure of γ″ Phase in Mg-Zn-Gd alloy, Scr. Mater., 2018, 146, p 64–67.CrossRef
18.
go back to reference W. Luo, Z. Xue, and W. Mao, Microstructure and Compressive Properties of Mg-Zn-Gd Alloys Containing W-phase Nanoparticles Developed by the Spark Plasma Sintering of Rapid Solidification Ribbons, J. Mater. Res., 2019, 34(18), p 3130–3140.CrossRef W. Luo, Z. Xue, and W. Mao, Microstructure and Compressive Properties of Mg-Zn-Gd Alloys Containing W-phase Nanoparticles Developed by the Spark Plasma Sintering of Rapid Solidification Ribbons, J. Mater. Res., 2019, 34(18), p 3130–3140.CrossRef
19.
go back to reference Y. Jie, L. Wang, L. Wang et al., Microstructures and Mechanical Properties of the Mg-4.5Zn-xGd (x = 0, 2, 3 and 5) Alloys, J. Alloys Compd., 2008, 459(1–2), p 274–280. Y. Jie, L. Wang, L. Wang et al., Microstructures and Mechanical Properties of the Mg-4.5Zn-xGd (x = 0, 2, 3 and 5) Alloys, J. Alloys Compd., 2008, 459(1–2), p 274–280.
20.
go back to reference S. Yin, Z. Zhang, X. Liu et al., Effects of Zn/Gd Ratio on the Microstructures and Mechanical Properties of Mg-Zn-Gd-Zr Alloys, Mater. Sci. Eng. A, 2017, 695, p 135–143.CrossRef S. Yin, Z. Zhang, X. Liu et al., Effects of Zn/Gd Ratio on the Microstructures and Mechanical Properties of Mg-Zn-Gd-Zr Alloys, Mater. Sci. Eng. A, 2017, 695, p 135–143.CrossRef
21.
go back to reference Y. Xu, J. Li, M. Qi et al., Enhanced Mechanical Properties of Mg-Zn-Y-Zr Alloy by Low-Speed Indirect Extrusion, J. Mater. Res. Technol., 2020, 9(5), p 9856–9867.CrossRef Y. Xu, J. Li, M. Qi et al., Enhanced Mechanical Properties of Mg-Zn-Y-Zr Alloy by Low-Speed Indirect Extrusion, J. Mater. Res. Technol., 2020, 9(5), p 9856–9867.CrossRef
22.
go back to reference H.S. Jiang, X.G. Qiao, C. Xu et al., Ultrahigh Strength As-Extruded Mg-10.3Zn-6.4Y-0.4Zr-0.5Ca Alloy Containing W Phase, Mater. Des., 2016, 108, p 391–399.CrossRef H.S. Jiang, X.G. Qiao, C. Xu et al., Ultrahigh Strength As-Extruded Mg-10.3Zn-6.4Y-0.4Zr-0.5Ca Alloy Containing W Phase, Mater. Des., 2016, 108, p 391–399.CrossRef
23.
go back to reference J. Gröbner, A. Kozlov, X.Y. Fang et al., Phase Equilibria and Transformations in Ternary Mg-Gd-Zn Alloys, Acta Mater., 2012, 60(17), p 5948–5962.CrossRef J. Gröbner, A. Kozlov, X.Y. Fang et al., Phase Equilibria and Transformations in Ternary Mg-Gd-Zn Alloys, Acta Mater., 2012, 60(17), p 5948–5962.CrossRef
24.
go back to reference H.Y. Qi, G.X. Huang, H. Bo et al., Experimental Investigation and Thermodynamic Assessment of the Mg-Zn-Gd System Focused on Mg-Rich Corner, J. Mater. Sci., 2012, 47, p 1319–1330.CrossRef H.Y. Qi, G.X. Huang, H. Bo et al., Experimental Investigation and Thermodynamic Assessment of the Mg-Zn-Gd System Focused on Mg-Rich Corner, J. Mater. Sci., 2012, 47, p 1319–1330.CrossRef
25.
go back to reference H. Zhou, K. Liu, L. Zhang et al., Influence of High Pressure During Solidification on the Microstructure and Strength of Mg-Zn-Y Alloys, J. Rare Earths, 2016, 34(4), p 435–440.CrossRef H. Zhou, K. Liu, L. Zhang et al., Influence of High Pressure During Solidification on the Microstructure and Strength of Mg-Zn-Y Alloys, J. Rare Earths, 2016, 34(4), p 435–440.CrossRef
26.
go back to reference R. Motallebi, Z. Savaedi, and H. Mirzadeh, Additive Manufacturing—A Review of Hot Deformation Behavior and Constitutive Modeling of Flow Stress, Curr. Opin. Solid State Mater. Sci., 2022, 26(3), p 100992.CrossRef R. Motallebi, Z. Savaedi, and H. Mirzadeh, Additive Manufacturing—A Review of Hot Deformation Behavior and Constitutive Modeling of Flow Stress, Curr. Opin. Solid State Mater. Sci., 2022, 26(3), p 100992.CrossRef
27.
go back to reference Z. Savaedi, R. Motallebi, and H. Mirzadeh, A Review of Hot Deformation Behavior and Constitutive Models to Predict Flow Stress of High-Entropy Alloys, J. Alloys Compd., 2022, 903, p 163964.CrossRef Z. Savaedi, R. Motallebi, and H. Mirzadeh, A Review of Hot Deformation Behavior and Constitutive Models to Predict Flow Stress of High-Entropy Alloys, J. Alloys Compd., 2022, 903, p 163964.CrossRef
28.
go back to reference T.Y. Kwak, H.K. Lim, S.H. Han et al., Refinement of the Icosahedral Quasicrystalline Phase and the Grain Size of Mg-9.25Zn-1.66Y Alloy by High-Ratio Differential Speed Rolling, Scr. Mater., 2015, 103, p 49–52.CrossRef T.Y. Kwak, H.K. Lim, S.H. Han et al., Refinement of the Icosahedral Quasicrystalline Phase and the Grain Size of Mg-9.25Zn-1.66Y Alloy by High-Ratio Differential Speed Rolling, Scr. Mater., 2015, 103, p 49–52.CrossRef
29.
go back to reference J. Zhang, B. Chen, and C. Liu, An Investigation of Dynamic Recrystallization Behavior of ZK60-Er Magnesium Alloy, Mater. Sci. Eng. A, 2014, 612, p 253–266.CrossRef J. Zhang, B. Chen, and C. Liu, An Investigation of Dynamic Recrystallization Behavior of ZK60-Er Magnesium Alloy, Mater. Sci. Eng. A, 2014, 612, p 253–266.CrossRef
30.
go back to reference A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199–1207.CrossRef A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199–1207.CrossRef
31.
go back to reference E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2007, 43(5), p 684–691.CrossRef E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2007, 43(5), p 684–691.CrossRef
32.
go back to reference J.S. Kyeong, J.K. Kim, M.J. Lee et al., Texture Modification by Addition of Ca in Mg-Zn-Y Alloy, Mater. Trans., 2012, 53(5), p 991–994.CrossRef J.S. Kyeong, J.K. Kim, M.J. Lee et al., Texture Modification by Addition of Ca in Mg-Zn-Y Alloy, Mater. Trans., 2012, 53(5), p 991–994.CrossRef
Metadata
Title
Quantitative Study of W-phase Content in Mg-Zn-Gd-Zr Alloys and Its Effect on Dynamic Recrystallization
Authors
Yuguang Li
Feng Guo
Jing Li
Huisheng Cai
Publication date
09-08-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08219-3

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners