Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

17-05-2023 | Technical Article

Microstructure–Mechanical Property Relationship and Austenite Stability in Transformation-Induced Plasticity Steels: Effects of Quenching and Partitioning Processing and Quenching and Tempering Treatments

Authors: Huixin Zuo, Jinfeng Feng, Ying Sun, Qiannan Li, Zhichao Li, Devesh Misra, Lianfang He, Huiping Li

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We elucidate here the underlying reason for the differences in mechanical properties of cold-rolled lightweight medium manganese TRIP steel subjected to two unique heat treatments with the objective to optimize the mechanical properties. Furthermore, the relationship between the mechanical properties of the material and the stability of austenite was explored. After quenching and tempering (Q and T) treatment, tensile strength and total elongation of the experimental steel were 942 ± 11-1380 ± 22 MPa and 12.5 ± 1.5-52.5 ± 2.1%, respectively. While, the tensile strength and total elongation of experimental steel after quenching and partitioning (Q and P) treatment were in the range of 890 ± 10-1470 ± 24 MPa and 5 ± 0.8-47.4 ± 1.7%, respectively. The primary reason for the difference in mechanical properties is that the volume fraction of austenite in Q and T steel was higher, and the degree of TRIP effect was significantly greater. Interestingly, when the volume fraction of austenite was similar, the elongation of steel after Q and P treatment was greater. Short-time heat treatment results in non-uniform distribution of Mn in austenite grain. The Mn content at the austenite grain boundary regions is higher than that inside the grain, which leads to low stability of austenite. Austenite transforms in the short time during deformation, which cannot provide strong TRIP effect, resulting in low elongation. However, the diffusion time of Mn in the steel heat treated by Q and P is relatively long, the diffusion distribution of Mn in austenite is more uniform, and the stability of austenite is enhanced, which can delay the emergence of TRIP effect during deformation, and provides strong work hardening ability and increases elongation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Lee, S.J. Lee, and B.C. De Cooman, Austenite Stability of Ultrafine-Grained Transformation-Induced Plasticity Steel with Mn Partitioning, Scr. Mater., 2011, 65(3), p 225–228.CrossRef S. Lee, S.J. Lee, and B.C. De Cooman, Austenite Stability of Ultrafine-Grained Transformation-Induced Plasticity Steel with Mn Partitioning, Scr. Mater., 2011, 65(3), p 225–228.CrossRef
2.
go back to reference D.W. Suh and S.J. Kim, Medium Mn Transformation-Induced Plasticity Steels: Recent Progress and Challenges, Scr. Mater., 2017, 126, p 63–67.CrossRef D.W. Suh and S.J. Kim, Medium Mn Transformation-Induced Plasticity Steels: Recent Progress and Challenges, Scr. Mater., 2017, 126, p 63–67.CrossRef
3.
go back to reference Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Deformation Behavior in cold-Rolled Medium-Manganese TRIP Steel and Effect of Pre-strain on the Luders Bands, Mater. Sci. Eng. A, 2017, 679, p 230–239.CrossRef Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Deformation Behavior in cold-Rolled Medium-Manganese TRIP Steel and Effect of Pre-strain on the Luders Bands, Mater. Sci. Eng. A, 2017, 679, p 230–239.CrossRef
4.
go back to reference Z.C. Li, X.T. Zhang, Y.J. Mou, Z.H. Cai, R.D.K. Misra, L.F. He, H.P. Li, and H. Ding, Design of an Effective Heat Treatment Involving Intercritical Hardening for High-Strength–High Elongation of 0.2C–1.5Al-(6–8.5)Mn-Fe TRIP Steels: Microstructural Evolution and Deformation Behaviour, Mater. Sci. Technol., 2020, 36(4), p 500–510.CrossRef Z.C. Li, X.T. Zhang, Y.J. Mou, Z.H. Cai, R.D.K. Misra, L.F. He, H.P. Li, and H. Ding, Design of an Effective Heat Treatment Involving Intercritical Hardening for High-Strength–High Elongation of 0.2C–1.5Al-(6–8.5)Mn-Fe TRIP Steels: Microstructural Evolution and Deformation Behaviour, Mater. Sci. Technol., 2020, 36(4), p 500–510.CrossRef
5.
go back to reference G.-J. Cheng, B. Gault, C.-Y. Huang, C.-Y. Huang, and H.-W. Yen, Warm Ductility Enhanced by Austenite Reversion in Ultrafine-Grained Duplex Steel, Acta Mater., 2018, 148, p 344–354.CrossRef G.-J. Cheng, B. Gault, C.-Y. Huang, C.-Y. Huang, and H.-W. Yen, Warm Ductility Enhanced by Austenite Reversion in Ultrafine-Grained Duplex Steel, Acta Mater., 2018, 148, p 344–354.CrossRef
6.
go back to reference J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon Partitioning into Austenite After Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622.CrossRef J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon Partitioning into Austenite After Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622.CrossRef
7.
go back to reference S.J. Kim, G.L. Chang, T.H. Lee, and C.S. Oh, Effect of Cu, Cr and Ni on Mechanical Properties of 0.15 wt.% C TRIP-Aided Cold Rolled Steels, Scr. Mater., 2003, 48(5), p 539–544.CrossRef S.J. Kim, G.L. Chang, T.H. Lee, and C.S. Oh, Effect of Cu, Cr and Ni on Mechanical Properties of 0.15 wt.% C TRIP-Aided Cold Rolled Steels, Scr. Mater., 2003, 48(5), p 539–544.CrossRef
8.
go back to reference H. Luo, H. Dong, and M. Huang, Effect of Intercritical Annealing on the Lüders Strains of Medium Mn Transformation-Induced Plasticity Steels, Mater. Design, 2015, 83, p 42–48.CrossRef H. Luo, H. Dong, and M. Huang, Effect of Intercritical Annealing on the Lüders Strains of Medium Mn Transformation-Induced Plasticity Steels, Mater. Design, 2015, 83, p 42–48.CrossRef
9.
go back to reference P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation- Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42(12), p 3691–3702.CrossRef P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation- Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42(12), p 3691–3702.CrossRef
10.
go back to reference H. Pan, M. Cai, H. Ding, S. Sun, H. Huang, and Y. Zhang, Ultrahigh Strength-Ductile Medium-Mn Steel Auto-Parts Combining Warm Stamping and Quenching & Partitioning, Mater. Sci. Technol., 2019, 35(7), p 807–814.CrossRef H. Pan, M. Cai, H. Ding, S. Sun, H. Huang, and Y. Zhang, Ultrahigh Strength-Ductile Medium-Mn Steel Auto-Parts Combining Warm Stamping and Quenching & Partitioning, Mater. Sci. Technol., 2019, 35(7), p 807–814.CrossRef
11.
go back to reference B. Hu, H. Luo, F. Yang, and H. Dong, Recent Progress in Medium-Mn Steels Made with New Designing Strategies, J. Mater. Sci. Technol., 2017, 33(12), p 1457–1464.CrossRef B. Hu, H. Luo, F. Yang, and H. Dong, Recent Progress in Medium-Mn Steels Made with New Designing Strategies, J. Mater. Sci. Technol., 2017, 33(12), p 1457–1464.CrossRef
12.
go back to reference Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding, Mechanical Properties and Deformation Behavior in Hot-Rolled 0.2C–1.5/3A1-8.5Mn-Fe TRIP Steel: The Discontinuous TRIP Effect, Mater. Sci. Eng. A, 2016, 673, p 63–72.CrossRef Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding, Mechanical Properties and Deformation Behavior in Hot-Rolled 0.2C–1.5/3A1-8.5Mn-Fe TRIP Steel: The Discontinuous TRIP Effect, Mater. Sci. Eng. A, 2016, 673, p 63–72.CrossRef
13.
go back to reference Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Microstructure-Mechanical Property Relationship and Austenite Stability in Medium-Mn TRIP Steels: The Effect of Austenite-Reverted Transformation and Quenching-Tempering Treatments, Mater. Sci. Eng. A, 2017, 682, p 211–219.CrossRef Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Microstructure-Mechanical Property Relationship and Austenite Stability in Medium-Mn TRIP Steels: The Effect of Austenite-Reverted Transformation and Quenching-Tempering Treatments, Mater. Sci. Eng. A, 2017, 682, p 211–219.CrossRef
14.
go back to reference Y. Li, W. Li, N. Min, W. Liu, and X. Jin, Effects of Hot/Cold Deformation on the Microstructures and Mechanical Properties of Ultra-Low Carbon Medium Manganese Quenching-Partitioning-Tempering Steels, Acta Mater., 2017, 139, p 96–108.CrossRef Y. Li, W. Li, N. Min, W. Liu, and X. Jin, Effects of Hot/Cold Deformation on the Microstructures and Mechanical Properties of Ultra-Low Carbon Medium Manganese Quenching-Partitioning-Tempering Steels, Acta Mater., 2017, 139, p 96–108.CrossRef
15.
go back to reference A.K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, and S.B. Singh, Microstructural and Mechanical Characterization of C-Mn-Al-Si Cold-Rolled TRIP-Aided Steel, Mater. Sci. Eng. A, 2007, 445–446, p 549–557.CrossRef A.K. Srivastava, D. Bhattacharjee, G. Jha, N. Gope, and S.B. Singh, Microstructural and Mechanical Characterization of C-Mn-Al-Si Cold-Rolled TRIP-Aided Steel, Mater. Sci. Eng. A, 2007, 445–446, p 549–557.CrossRef
16.
go back to reference E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite Stabilization Through Manganese Enrichment, Scr. Mater., 2011, 64(2), p 185–188.CrossRef E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite Stabilization Through Manganese Enrichment, Scr. Mater., 2011, 64(2), p 185–188.CrossRef
17.
go back to reference N. Vandijk, A. Butt, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. Vanderzwaag, Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling, Acta Mater., 2005, 53(20), p 5439–5447.CrossRef N. Vandijk, A. Butt, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. Vanderzwaag, Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling, Acta Mater., 2005, 53(20), p 5439–5447.CrossRef
18.
go back to reference M.C. Jo, J. Park, S.S. Sohn, S. Kim, J. Oh, and S. Lee, Effects of Untransformed Ferrite on Charpy Impact Toughness in 1.8-GPa-Grade Hot-Press-Forming Steel Sheets, Mater. Sci. Eng. A, 2017, 707, p 65–72.CrossRef M.C. Jo, J. Park, S.S. Sohn, S. Kim, J. Oh, and S. Lee, Effects of Untransformed Ferrite on Charpy Impact Toughness in 1.8-GPa-Grade Hot-Press-Forming Steel Sheets, Mater. Sci. Eng. A, 2017, 707, p 65–72.CrossRef
19.
go back to reference B. Hu and H. Luo, A Novel Two-Step Intercritical Annealing Process to Improve Mechanical Properties of Medium Mn Steel, Acta Mater., 2019, 176, p 250–263.CrossRef B. Hu and H. Luo, A Novel Two-Step Intercritical Annealing Process to Improve Mechanical Properties of Medium Mn Steel, Acta Mater., 2019, 176, p 250–263.CrossRef
20.
go back to reference Z.H. Cai, D.L. Zhang, L.F. Ma, H. Ding, Y. Feng, J. Hu, and R.D.K. Misra, Competing Deformation Mechanisms in an Austenite-Ferrite Medium-Mn Steel at Different Strain Rates, Mater. Sci. Eng. A, 2021, 818, p 141357.CrossRef Z.H. Cai, D.L. Zhang, L.F. Ma, H. Ding, Y. Feng, J. Hu, and R.D.K. Misra, Competing Deformation Mechanisms in an Austenite-Ferrite Medium-Mn Steel at Different Strain Rates, Mater. Sci. Eng. A, 2021, 818, p 141357.CrossRef
21.
go back to reference H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, and H.L. Yi, Quenching and Flash- Partitioning Enables Austenite Stabilization During Press-Hardening Processing, Scr. Mater., 2020, 178, p 77–81.CrossRef H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, and H.L. Yi, Quenching and Flash- Partitioning Enables Austenite Stabilization During Press-Hardening Processing, Scr. Mater., 2020, 178, p 77–81.CrossRef
22.
go back to reference L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Making Ultrastrong Steel Tough by Grain-Boundary Delamination, Science, 2020, 368, p 1347–1358.CrossRefPubMed L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Making Ultrastrong Steel Tough by Grain-Boundary Delamination, Science, 2020, 368, p 1347–1358.CrossRefPubMed
23.
go back to reference H. Pan, H. Ding, and M. Cai, Microstructural Evolution and Precipitation Behavior of the Warm-Rolled Medium Mn Steels Containing Nb or Nb-Mo During Intercritical Annealing, Mater. Sci. Eng. A, 2018, 736, p 375–382.CrossRef H. Pan, H. Ding, and M. Cai, Microstructural Evolution and Precipitation Behavior of the Warm-Rolled Medium Mn Steels Containing Nb or Nb-Mo During Intercritical Annealing, Mater. Sci. Eng. A, 2018, 736, p 375–382.CrossRef
24.
go back to reference G.J. Cheng, B. Gault, C.Y. Huang, C.Y. Huang, and H.W. Yen, Warm Ductility Enhanced by Austenite Reversion in Ultrafine-Grained Duplex Steel, Acta. Mater., 2018, 148, p 344–354.CrossRef G.J. Cheng, B. Gault, C.Y. Huang, C.Y. Huang, and H.W. Yen, Warm Ductility Enhanced by Austenite Reversion in Ultrafine-Grained Duplex Steel, Acta. Mater., 2018, 148, p 344–354.CrossRef
25.
go back to reference H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, and H.L. Yi, Quenching and Flash-Partitioning Enables Austenite Stabilization During Press-Hardening Processing, Scr. Mater., 2020, 178, p 77–81.CrossRef H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, and H.L. Yi, Quenching and Flash-Partitioning Enables Austenite Stabilization During Press-Hardening Processing, Scr. Mater., 2020, 178, p 77–81.CrossRef
26.
go back to reference J. Zhang, H. Ding, and R.D.K. Misra, Enhanced Strain Hardening and Microstructural Characterization in a Low Carbon Quenching and Partitioning Steel with Partial Austenization, Mater. Sci. Eng. A, 2015, 636, p 53–59.CrossRef J. Zhang, H. Ding, and R.D.K. Misra, Enhanced Strain Hardening and Microstructural Characterization in a Low Carbon Quenching and Partitioning Steel with Partial Austenization, Mater. Sci. Eng. A, 2015, 636, p 53–59.CrossRef
27.
go back to reference C. Wang, H. Ding, M.H. Cai, and B. Rolfe, Characterization of Microstructures and tensile Properties of TRIP-Aided Steels with Different Matrix Microstructure, Mater. Sci. Eng. A, 2014, 610, p 65–75.CrossRef C. Wang, H. Ding, M.H. Cai, and B. Rolfe, Characterization of Microstructures and tensile Properties of TRIP-Aided Steels with Different Matrix Microstructure, Mater. Sci. Eng. A, 2014, 610, p 65–75.CrossRef
28.
go back to reference C. Wang, H. Ding, M.H. Cai, and B. Rolfe, Multi-Phase Microstructure Design of a Novel High Strength TRIP Steel Through Experimental Methodology, Mater. Sci. Eng. A, 2014, 610, p 436–444.CrossRef C. Wang, H. Ding, M.H. Cai, and B. Rolfe, Multi-Phase Microstructure Design of a Novel High Strength TRIP Steel Through Experimental Methodology, Mater. Sci. Eng. A, 2014, 610, p 436–444.CrossRef
29.
go back to reference Z.H. Cai, D.L. Zhang, G.Q. Wen, L.F. Ma, and R.D.K. Misra, The Influence of Cooling Rate on Austenite Stability and Mechanical Properties in an Austenite-Ferrite Medium-Mn Steel, J. Mater. Eng. Perform., 2021, 134, p 7917–7925.CrossRef Z.H. Cai, D.L. Zhang, G.Q. Wen, L.F. Ma, and R.D.K. Misra, The Influence of Cooling Rate on Austenite Stability and Mechanical Properties in an Austenite-Ferrite Medium-Mn Steel, J. Mater. Eng. Perform., 2021, 134, p 7917–7925.CrossRef
Metadata
Title
Microstructure–Mechanical Property Relationship and Austenite Stability in Transformation-Induced Plasticity Steels: Effects of Quenching and Partitioning Processing and Quenching and Tempering Treatments
Authors
Huixin Zuo
Jinfeng Feng
Ying Sun
Qiannan Li
Zhichao Li
Devesh Misra
Lianfang He
Huiping Li
Publication date
17-05-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08240-6

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners