Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

08-05-2023 | Technical Article

Research on Mechanical Properties and Constitutive Model of High-Damping Metal Wire Mesh

Authors: Yu Tang, Bao Zi, Yiwan Wu, Hongbai Bai, Rong Liu

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A constitutive model is developed to efficiently capture the nonlinear hysteretic properties of a new type of high-damping metal wire mesh (HDMWM). In the HDMWM, the metal wire mesh is woven with multi-strand twisted wires in a certain regularity. In the quasi-static test, six batches of metal wire mesh (MWM) and HDMWM specimens with different densities and varying number of strands are prepared and their mechanical properties are characterized by secant stiffness, energy consumption and loss factor. Results show that for the same density, the energy consumption and loss factor of HDMWM specimens are higher than MWM specimens by 10.69 ~ 22.83% and 44.19 ~ 48.44%, respectively. Additionally, HDMWM is found to have a higher damping level than MWM. A constitutive model is proposed that comprises a cantilever beam as the force analysis element where the change of the arc angle of the element mesh is similar to a normal distribution. The accuracy of the model is verified by error analysis, which shows that the relative percentage error between model results and test results is 0.97 ~ 12.13%. Therefore, the constitutive model can reflect the mechanical properties of HDMWM with reasonable accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E.M. Al-Khateeb, Design, Modeling and Experimental Investigation of Wire Mesh Vibration dampers/Dissertation Abstracts International, Vol: 63–04, Section: B, p: 2022.;Chair: John M. Vance., (2002). E.M. Al-Khateeb, Design, Modeling and Experimental Investigation of Wire Mesh Vibration dampers/Dissertation Abstracts International, Vol: 63–04, Section: B, p: 2022.;Chair: John M. Vance., (2002).
2.
go back to reference H.O. Sun, S. Bu, and Y.G. Luan, A High-Precision Method for Calculating the Pressure Drop Across Wire Mesh Filters, Chem. Eng. Sci., 2015, 127, p 143–150. CrossRef H.O. Sun, S. Bu, and Y.G. Luan, A High-Precision Method for Calculating the Pressure Drop Across Wire Mesh Filters, Chem. Eng. Sci., 2015, 127, p 143–150. CrossRef
3.
go back to reference S. Moitra, T. Roy, R. Ganguly, and C.M. Megaridis, Jet Impact on Superhydrophobic Metal Mesh, Langmuir, 2021, 37, p 2891-2899. CrossRefPubMed S. Moitra, T. Roy, R. Ganguly, and C.M. Megaridis, Jet Impact on Superhydrophobic Metal Mesh, Langmuir, 2021, 37, p 2891-2899. CrossRefPubMed
4.
go back to reference C.Z. Wang, H.X. Wang, K. Shankar, and P.J. Hazell, Dynamic Failure Behavior of Steel Wire Mesh Subjected to Medium Velocity Impact: Experiments and Simulations, Int. J. Mech. Sci., 2022, 216, p 10691. CrossRef C.Z. Wang, H.X. Wang, K. Shankar, and P.J. Hazell, Dynamic Failure Behavior of Steel Wire Mesh Subjected to Medium Velocity Impact: Experiments and Simulations, Int. J. Mech. Sci., 2022, 216, p 10691. CrossRef
5.
go back to reference C.Z. Wang, H.X. Wang, K. Shankar, E.V. Morozov, and P.J. Hazell, On the Mechanical Behaviour of Steel Wire Mesh Subjected to Low-Velocity Impact, Thin Wall Struct., 2021, 159, p 107281. CrossRef C.Z. Wang, H.X. Wang, K. Shankar, E.V. Morozov, and P.J. Hazell, On the Mechanical Behaviour of Steel Wire Mesh Subjected to Low-Velocity Impact, Thin Wall Struct., 2021, 159, p 107281. CrossRef
6.
go back to reference L.S. Andres and T.A. Chirathadam, A Metal Mesh Foil Bearing And A Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings, J. Eng. Gas Turb. Power., 2012, 134, p 859. L.S. Andres and T.A. Chirathadam, A Metal Mesh Foil Bearing And A Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings, J. Eng. Gas Turb. Power., 2012, 134, p 859.
8.
go back to reference Y.H. Ma, H.X. Zhu, C. Wang, H.W. Qiao,and J. Hong, ASME, Compression Mechanics of The Sc-Mr Support for Rotor System, in: Proceedings of the Asme Turbo Expo: Turbine Technical Conference and Exposition, 2014, 7A, ASME Turbo Expo: Turbine Technical Conference and Exposition, 2014. Y.H. Ma, H.X. Zhu, C. Wang, H.W. Qiao,and J. Hong, ASME, Compression Mechanics of The Sc-Mr Support for Rotor System, in: Proceedings of the Asme Turbo Expo: Turbine Technical Conference and Exposition, 2014, 7A, ASME Turbo Expo: Turbine Technical Conference and Exposition, 2014.
9.
go back to reference V.V. Choudhry, J.M. Vance, ASME, Design Equations for Wire Mesh Bearing Dampers in Turbomachinery, in: Proceedings of the ASME Turbo Expo 2005, Vol 4, 50th ASME Turbo-Expo, 2005, pp. 807–814. V.V. Choudhry, J.M. Vance, ASME, Design Equations for Wire Mesh Bearing Dampers in Turbomachinery, in: Proceedings of the ASME Turbo Expo 2005, Vol 4, 50th ASME Turbo-Expo, 2005, pp. 807–814.
10.
go back to reference Y.B. Lee, C.H. Kim, T.H. Kim,and T.Y. Kim, ASME, Effects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings. in: Proceedings of The Asme Turbo Expo 2011, VOL 6, PTS A AND B, ASME Turbo Expo 2011, 2012, pp. 675-683 Y.B. Lee, C.H. Kim, T.H. Kim,and T.Y. Kim, ASME, Effects of Mesh Density on Static Load Performance of Metal Mesh Gas Foil Bearings. in: Proceedings of The Asme Turbo Expo 2011, VOL 6, PTS A AND B, ASME Turbo Expo 2011, 2012, pp. 675-683
11.
go back to reference M. Zarzour and J. Vance, Experimental Evaluation of a Metal Mesh Bearing Damper, J. Eng. Gas Turb. Power, 2000, 122, p 326–329. CrossRef M. Zarzour and J. Vance, Experimental Evaluation of a Metal Mesh Bearing Damper, J. Eng. Gas Turb. Power, 2000, 122, p 326–329. CrossRef
12.
go back to reference B. Ertas, H.G. Luo, ASME, Nonlinear dynamic characterization of oil-free wire mesh dampers, in: Proceedings of the Asme International Design Engineering Technical Conference and Information In Engineering Conference, VOL 1, PTS A-C, ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, 2008, pp. 1225–1234. B. Ertas, H.G. Luo, ASME, Nonlinear dynamic characterization of oil-free wire mesh dampers, in: Proceedings of the Asme International Design Engineering Technical Conference and Information In Engineering Conference, VOL 1, PTS A-C, ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, 2008, pp. 1225–1234.
14.
go back to reference F. Mezghani, A.F. Del Rincon, P.G. Fernandez, A. De-Juan, J. Sanchez-Espiga, and F.V. Rueda, Effectiveness Study of Wire Mesh Vibration Damper for Sensitive Equipment Protection From Seismic Events, Mech. Syst. Sig. Pr, 2022, 164, p 10680. F. Mezghani, A.F. Del Rincon, P.G. Fernandez, A. De-Juan, J. Sanchez-Espiga, and F.V. Rueda, Effectiveness Study of Wire Mesh Vibration Damper for Sensitive Equipment Protection From Seismic Events, Mech. Syst. Sig. Pr, 2022, 164, p 10680.
15.
go back to reference A. Perez, D. Ferreno, I.A. Carrascal, J.A. Polanco, J.A. Casado, and S. Diego, Metal Cushion Dampers for Railway Applications: A Review, Constr. Build Mater., 2020, 238, p 11711. CrossRef A. Perez, D. Ferreno, I.A. Carrascal, J.A. Polanco, J.A. Casado, and S. Diego, Metal Cushion Dampers for Railway Applications: A Review, Constr. Build Mater., 2020, 238, p 11711. CrossRef
16.
go back to reference M.L. Godoy, E.D. Banus, E.E. Miro, and V.G. Milt, Single and Double bed Stacked Wire Mesh Cartridges for the Catalytic Treatment of Diesel Exhausts, J. Environ. Chem. Eng., 2019, 7, p 103209. CrossRef M.L. Godoy, E.D. Banus, E.E. Miro, and V.G. Milt, Single and Double bed Stacked Wire Mesh Cartridges for the Catalytic Treatment of Diesel Exhausts, J. Environ. Chem. Eng., 2019, 7, p 103209. CrossRef
17.
go back to reference G. Zou, Z. Liu, Z. Chang, and Y. Li, On the Compression Properties of Metal Wire Mesh Rubber, J. Exp. Mech., 2014, 29, p 676–682. G. Zou, Z. Liu, Z. Chang, and Y. Li, On the Compression Properties of Metal Wire Mesh Rubber, J. Exp. Mech., 2014, 29, p 676–682.
18.
go back to reference G. Zou, H. Cheng, Z. Chang, P. Wang, and R. Wang, Research on Static Mechanical Properties of Metal Rubber Made of Wire Mesh, J. Harbin Eng. Univ., 2015, 36, p 332–336. G. Zou, H. Cheng, Z. Chang, P. Wang, and R. Wang, Research on Static Mechanical Properties of Metal Rubber Made of Wire Mesh, J. Harbin Eng. Univ., 2015, 36, p 332–336.
19.
go back to reference K. Ryu and H. Yi, Wire Mesh Dampers for Semi-Floating Ring Bearings in Automotive Turbochargers: Measurements of Structural Stiffness and Damping Parameters, Energies, 2018, 11, p 812. CrossRef K. Ryu and H. Yi, Wire Mesh Dampers for Semi-Floating Ring Bearings in Automotive Turbochargers: Measurements of Structural Stiffness and Damping Parameters, Energies, 2018, 11, p 812. CrossRef
20.
go back to reference P. Yang, T. Zhou, D. Jia, Z.Q. Qin, Y.W. Wu, and H.B. Bai, Compressive Mechanical Behavior and Model of Composite Elastic-Porous Metal Materials, Mat. Res. Exp., 2021, 8, p 126518. CrossRef P. Yang, T. Zhou, D. Jia, Z.Q. Qin, Y.W. Wu, and H.B. Bai, Compressive Mechanical Behavior and Model of Composite Elastic-Porous Metal Materials, Mat. Res. Exp., 2021, 8, p 126518. CrossRef
21.
go back to reference K. Feng, Y.M. Liu, X.Y. Zhao, and W.H. Liu, Experimental Evaluation of the Structure Characterization of a Novel Hybrid Bump-Metal Mesh Foil Bearing, J. Tribol-T ASME, 2016, 138, p 021802. CrossRef K. Feng, Y.M. Liu, X.Y. Zhao, and W.H. Liu, Experimental Evaluation of the Structure Characterization of a Novel Hybrid Bump-Metal Mesh Foil Bearing, J. Tribol-T ASME, 2016, 138, p 021802. CrossRef
22.
go back to reference Z. Chang, S. Liu, G. Zou, K. Jiao, and B. Zhang, Finite Element Simulation on Shock Response of Metal-Net Rubber Damper, J. Harbin Eng. Univ., 2018, 39, p 1505–1510. Z. Chang, S. Liu, G. Zou, K. Jiao, and B. Zhang, Finite Element Simulation on Shock Response of Metal-Net Rubber Damper, J. Harbin Eng. Univ., 2018, 39, p 1505–1510.
23.
go back to reference Z. Chang, G. Zou, Z. Liu, and Y. Su, Shock Response of Metal-Net Rubber Vibration Isolation System, J. Harbin Eng. Univ., 2017, 38, p 80–85. Z. Chang, G. Zou, Z. Liu, and Y. Su, Shock Response of Metal-Net Rubber Vibration Isolation System, J. Harbin Eng. Univ., 2017, 38, p 80–85.
24.
go back to reference S. Rashidi and S. Ziaei-Rad, Experimental and Numerical Vibration Analysis of Wire Rope Isolators Under Quasi-Static and Dynamic Loadings, Eng. Struct., 2017, 148, p 328–339. CrossRef S. Rashidi and S. Ziaei-Rad, Experimental and Numerical Vibration Analysis of Wire Rope Isolators Under Quasi-Static and Dynamic Loadings, Eng. Struct., 2017, 148, p 328–339. CrossRef
25.
go back to reference H. Wang, X. Gong, F. Pan, and Y. Qiao, Parametric Identification Method for Identifying Dynamic Hysteretic Model Parameters of O-Type Wire-Cable Vibration Isolator, J. Vib. Shock, 2015, 34, p 155–160. H. Wang, X. Gong, F. Pan, and Y. Qiao, Parametric Identification Method for Identifying Dynamic Hysteretic Model Parameters of O-Type Wire-Cable Vibration Isolator, J. Vib. Shock, 2015, 34, p 155–160.
26.
go back to reference P.S. Balaji, M. Leblouba, M.E. Rahman, and L.H. Ho, Static Lateral Stiffness of Wire Rope Isolators, Mech. Based Des. Struc., 2016, 44, p 462–475. CrossRef P.S. Balaji, M. Leblouba, M.E. Rahman, and L.H. Ho, Static Lateral Stiffness of Wire Rope Isolators, Mech. Based Des. Struc., 2016, 44, p 462–475. CrossRef
27.
go back to reference D. Buzea, A. Iacob, C. Soimaru,and L. Ungureanu, Vibration Behavior Analysis of Wire Rope Isolators Under Traction and Compression Load, in: A. Olaru (Ed.) OPTIROB 2013: Optimization of the Intelligent Systems and their Applications In Aerospace, Robotics, Mechanical Engineering, Manufacturing Systems, Biomechatronics And Neurorehabilitation, 8tth IEEE/IACSIT/SCIEI International Conference on Optimization of the Intelligent Systems and Their Applications in Aerospace, Robotics, Mechanical Engineering, Manufacturing Systems, Biomechatornics and Neurorehabilitation (OPTIROB), 2014, pp. 357–362. D. Buzea, A. Iacob, C. Soimaru,and L. Ungureanu, Vibration Behavior Analysis of Wire Rope Isolators Under Traction and Compression Load, in: A. Olaru (Ed.) OPTIROB 2013: Optimization of the Intelligent Systems and their Applications In Aerospace, Robotics, Mechanical Engineering, Manufacturing Systems, Biomechatronics And Neurorehabilitation, 8tth IEEE/IACSIT/SCIEI International Conference on Optimization of the Intelligent Systems and Their Applications in Aerospace, Robotics, Mechanical Engineering, Manufacturing Systems, Biomechatornics and Neurorehabilitation (OPTIROB), 2014, pp. 357–362.
28.
go back to reference G. Zou, Z. Liu, Z. Chang, and Y. Li, Constitutive Relation of Metal-Net Rubber, J. Aerospace Power, 2016, 31, p 2318–2324. G. Zou, Z. Liu, Z. Chang, and Y. Li, Constitutive Relation of Metal-Net Rubber, J. Aerospace Power, 2016, 31, p 2318–2324.
29.
go back to reference G. Zou, B. Zhang, Z. Chang, and S. Liu, Hysteresis Mechanical Model and Experimental Study of Spring Metal-Net Rubber Combination Damper, Chinese, J. Theor. Appl. Mech., 2018, 50, p 1125–1134. G. Zou, B. Zhang, Z. Chang, and S. Liu, Hysteresis Mechanical Model and Experimental Study of Spring Metal-Net Rubber Combination Damper, Chinese, J. Theor. Appl. Mech., 2018, 50, p 1125–1134.
30.
go back to reference T. Li, H. Bai, C. Lu, and F. Cao, Constitutive Models of Knitted-Dapped Metal Rubber Based on Microstructure Characterization, J. Vib. Shock, 2018, 37(75–82), p 88. T. Li, H. Bai, C. Lu, and F. Cao, Constitutive Models of Knitted-Dapped Metal Rubber Based on Microstructure Characterization, J. Vib. Shock, 2018, 37(75–82), p 88.
31.
go back to reference S.H. Youn, Y.S. Jang, and J.H. Han, Development of a Three-Axis Hybrid Mesh Isolator Using the Pseudoelasticity of a Shape Memory Alloy, Smart Mater. Struct., 2011, 20, p 075017. CrossRef S.H. Youn, Y.S. Jang, and J.H. Han, Development of a Three-Axis Hybrid Mesh Isolator Using the Pseudoelasticity of a Shape Memory Alloy, Smart Mater. Struct., 2011, 20, p 075017. CrossRef
32.
go back to reference K. Chandrasekhar, J. Rongong, and E. Cross, Mechanical Behaviour of Tangled Metal Wire Devices, Mech. Syst. Sig. PR, 2019, 118, p 13–29. CrossRef K. Chandrasekhar, J. Rongong, and E. Cross, Mechanical Behaviour of Tangled Metal Wire Devices, Mech. Syst. Sig. PR, 2019, 118, p 13–29. CrossRef
33.
go back to reference J.L. Hu, Q. Du, J.H. Gao, J.Y. Kang, and B.T. Guo, Compressive Mechanical Behavior of Multiple Wire Metal Rubber, MATER DESIGN, 2018, 140, p 231–240. CrossRef J.L. Hu, Q. Du, J.H. Gao, J.Y. Kang, and B.T. Guo, Compressive Mechanical Behavior of Multiple Wire Metal Rubber, MATER DESIGN, 2018, 140, p 231–240. CrossRef
34.
go back to reference H. Bai, Metal Rubber Materials and Engineering Applications, Science Press Beijing, China, 2014. H. Bai, Metal Rubber Materials and Engineering Applications, Science Press Beijing, China, 2014.
35.
go back to reference D. Zhang, F. Scarpa, Y. Ma, K. Boba, J. Hong, and H. Lu, Compression mechanics of nickel-based superalloy metal rubber, Mater. Sci. Eng., A, 2013, 580, p 305–312. CrossRef D. Zhang, F. Scarpa, Y. Ma, K. Boba, J. Hong, and H. Lu, Compression mechanics of nickel-based superalloy metal rubber, Mater. Sci. Eng., A, 2013, 580, p 305–312. CrossRef
36.
go back to reference Y.Y. Yang, Z.Y. Ren, H.B. Bai, D. Shen, and B. Zhang, Study on the Mechanical Properties of Metal Rubber Inner Core of O-Type Seal with Large Ring-to-Diameter Ratio, Adv Mater Sci Eng, 2020, 2020, p 1. Y.Y. Yang, Z.Y. Ren, H.B. Bai, D. Shen, and B. Zhang, Study on the Mechanical Properties of Metal Rubber Inner Core of O-Type Seal with Large Ring-to-Diameter Ratio, Adv Mater Sci Eng, 2020, 2020, p 1.
37.
go back to reference X. Xue, S.X. Ruan, H.B. Bai, X.C. Chen, Y.C. Shao, and C.H. Lu, An Enhanced Constitutive Model for the Nonlinear Mechanical Behavior of the Elastic-Porous Metal Rubber, Mech Mater, 2020, 148, p 103447. CrossRef X. Xue, S.X. Ruan, H.B. Bai, X.C. Chen, Y.C. Shao, and C.H. Lu, An Enhanced Constitutive Model for the Nonlinear Mechanical Behavior of the Elastic-Porous Metal Rubber, Mech Mater, 2020, 148, p 103447. CrossRef
38.
go back to reference Z. Ren, L. Shen, H. Bai, L. Pan, and S. Zhong, Constitutive Model of Disordered Grid Interpenetrating Structure of Flexible Microporous Metal Rubber, Mech. Syst. Sig. PR, 2021, 154, 107567.CrossRef Z. Ren, L. Shen, H. Bai, L. Pan, and S. Zhong, Constitutive Model of Disordered Grid Interpenetrating Structure of Flexible Microporous Metal Rubber, Mech. Syst. Sig. PR, 2021, 154, 107567.CrossRef
39.
go back to reference Y.H. Ma, Q.C. Zhang, D.Y. Zhang, F. Scarpa, B.L. Liu, and J. Hong, The Mechanics of Shape Memory Alloy Metal Rubber, Acta Mater, 2015, 96, p 89–100. CrossRef Y.H. Ma, Q.C. Zhang, D.Y. Zhang, F. Scarpa, B.L. Liu, and J. Hong, The Mechanics of Shape Memory Alloy Metal Rubber, Acta Mater, 2015, 96, p 89–100. CrossRef
Metadata
Title
Research on Mechanical Properties and Constitutive Model of High-Damping Metal Wire Mesh
Authors
Yu Tang
Bao Zi
Yiwan Wu
Hongbai Bai
Rong Liu
Publication date
08-05-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08169-w

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners