Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

20-04-2023 | Technical Article

Effect of Aging on Corrosion Resistance of AZ31 Magnesium Alloy

Authors: Pâmella S. Rodrigues, Isadora R. Zenóbio, Talita I. da Silva, Camila Q. C. Fernandes, Talita G. de Sousa, José A. de Castro, Gláucio S. da Fonseca, José A. O. Huguenin, Elivelton A. Ferreira

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The corrosion resistance of AZ31 magnesium alloy is strongly related to the microstructure, while the corrosion process leads to the production of atomic hydrogen that can penetrate the magnesium lattice and provoke stress corrosion cracking (SCC). The rate of SCC depends on the magnitude of hydrogen diffusion in magnesium and its alloys. In this work, analysis was made of the hydrogen diffusion coefficient and corrosion resistance of AZ31 alloy solubilized at 440 °C for 24 h and submitted to aging heat treatment at 220 °C for 6 and 12 h. Hydrogen permeation tests showed that aging of the AZ31 alloy did not affect the hydrogen diffusion coefficient (D). The D value found in this work (~5.0·10−9 m2 s−1) was in accordance with recent data for Mg. Before performing the corrosion resistance tests, the samples were anodized by micro-arc oxidation at ambient or subzero temperature, in order to improve the corrosion resistance. The samples aged for 12 h and anodized at subzero temperature presented the highest incorporation of silicon, the presence of Mg2SiO4, and the highest corrosion resistance in Hank’s solution.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, and H.-K. Seok, Biodegradability Engineering of Biodegradable Mg Alloys: Tailoring the Electrochemical Properties and Microstructure of Constituent Phases, Sci. Rep., 2013, 3(1), p 2367.PubMedPubMedCentralCrossRef P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, and H.-K. Seok, Biodegradability Engineering of Biodegradable Mg Alloys: Tailoring the Electrochemical Properties and Microstructure of Constituent Phases, Sci. Rep., 2013, 3(1), p 2367.PubMedPubMedCentralCrossRef
2.
go back to reference T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Magnesium from Bioresorbable Implants: Distribution and Impact on the Nano- and Mineral Structure of Bone, Biomaterials, 2016, 76, p 250–260.PubMedCrossRef T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Magnesium from Bioresorbable Implants: Distribution and Impact on the Nano- and Mineral Structure of Bone, Biomaterials, 2016, 76, p 250–260.PubMedCrossRef
3.
go back to reference E. Willbold, K. Kalla, I. Bartsch, K. Bobe, M. Brauneis, S. Remennik, D. Shechtman, J. Nellesen, W. Tillmann, C. Vogt, and F. Witte, Biocompatibility of Rapidly Solidified Magnesium Alloy RS66 as a Temporary Biodegradable Metal, Acta Biomater., 2013, 9(10), p 8509–8517.PubMedCrossRef E. Willbold, K. Kalla, I. Bartsch, K. Bobe, M. Brauneis, S. Remennik, D. Shechtman, J. Nellesen, W. Tillmann, C. Vogt, and F. Witte, Biocompatibility of Rapidly Solidified Magnesium Alloy RS66 as a Temporary Biodegradable Metal, Acta Biomater., 2013, 9(10), p 8509–8517.PubMedCrossRef
4.
go back to reference G. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate☆, Acta Biomater., 2007, 3(3), p 359–367.PubMedCrossRef G. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate☆, Acta Biomater., 2007, 3(3), p 359–367.PubMedCrossRef
5.
go back to reference J. Zhang, Y. Gu, Y. Guo, and C. Ning, Electrochemical Behavior of Biocompatible AZ31 Magnesium Alloy in Simulated Body Fluid, J. Mater. Sci., 2012, 47(13), p 5197–5204.CrossRef J. Zhang, Y. Gu, Y. Guo, and C. Ning, Electrochemical Behavior of Biocompatible AZ31 Magnesium Alloy in Simulated Body Fluid, J. Mater. Sci., 2012, 47(13), p 5197–5204.CrossRef
6.
go back to reference E. Ghali, W. Dietzel, and K.-U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13(1), p 7–23.CrossRef E. Ghali, W. Dietzel, and K.-U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13(1), p 7–23.CrossRef
7.
go back to reference L. Pompa, Z.U. Rahman, E. Munoz, and W. Haider, Surface Characterization and Cytotoxicity Response of Biodegradable Magnesium Alloys, Mater. Sci. Eng. C, 2015, 49, p 761–768.CrossRef L. Pompa, Z.U. Rahman, E. Munoz, and W. Haider, Surface Characterization and Cytotoxicity Response of Biodegradable Magnesium Alloys, Mater. Sci. Eng. C, 2015, 49, p 761–768.CrossRef
8.
go back to reference Z.U. Rahman, L. Pompa, and W. Haider, Electrochemical Characterization and In-Vitro Bio-Assessment of AZ31B and AZ91E Alloys as Biodegradable Implant Materials, J. Mater. Sci. Mater. Med., 2015, 26(8), p 217.CrossRef Z.U. Rahman, L. Pompa, and W. Haider, Electrochemical Characterization and In-Vitro Bio-Assessment of AZ31B and AZ91E Alloys as Biodegradable Implant Materials, J. Mater. Sci. Mater. Med., 2015, 26(8), p 217.CrossRef
9.
go back to reference Z.U. Rahman, K.M. Deen, and W. Haider, Controlling Corrosion Kinetics of Magnesium Alloys by Electrochemical Anodization and Investigation of Film Mechanical Properties, Appl. Surf. Sci., 2019, 484, p 906–916.CrossRef Z.U. Rahman, K.M. Deen, and W. Haider, Controlling Corrosion Kinetics of Magnesium Alloys by Electrochemical Anodization and Investigation of Film Mechanical Properties, Appl. Surf. Sci., 2019, 484, p 906–916.CrossRef
10.
go back to reference S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, and Y. Jiang, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6(2), p 626–640.PubMedCrossRef S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, and Y. Jiang, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6(2), p 626–640.PubMedCrossRef
11.
go back to reference H. Aghamohammadi, S.J. Hosseinipour, S.M. Rabiee, and R. Jamaati, Influence of Crystallographic Texture on the Corrosion Product Morphology and Corrosion Rate of AZ31 Plate in Simulated Body Fluid, J. Mater. Eng. Perform., 2020, 29(6), p 3824–3830.CrossRef H. Aghamohammadi, S.J. Hosseinipour, S.M. Rabiee, and R. Jamaati, Influence of Crystallographic Texture on the Corrosion Product Morphology and Corrosion Rate of AZ31 Plate in Simulated Body Fluid, J. Mater. Eng. Perform., 2020, 29(6), p 3824–3830.CrossRef
12.
go back to reference M. Kappes, M. Iannuzzi, and R.M. Carranza, Hydrogen Embrittlement of Magnesium and Magnesium Alloys: A Review, J. Electrochem. Soc., 2013, 160(4), p C168–C178.CrossRef M. Kappes, M. Iannuzzi, and R.M. Carranza, Hydrogen Embrittlement of Magnesium and Magnesium Alloys: A Review, J. Electrochem. Soc., 2013, 160(4), p C168–C178.CrossRef
13.
go back to reference Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, and A. Atrens, Hydrogen Trapping in Some Advanced High Strength Steels, Corros. Sci., 2016, 111, p 770–785.CrossRef Q. Liu, J. Venezuela, M. Zhang, Q. Zhou, and A. Atrens, Hydrogen Trapping in Some Advanced High Strength Steels, Corros. Sci., 2016, 111, p 770–785.CrossRef
14.
go back to reference L. Vecchi, D. Pecko, N. van den Steen, M.H. Mamme, B. Özdirik, D. van Laethem, Y. van Ingelgem, J. Deconinck, and H. Terryn, A Modelling Approach on the Impact of an Oxide Layer on the Hydrogen Permeation through Iron Membranes in the Devanathan-Stachurski Cell, Electrochim. Acta, 2018, 286, p 139–147.CrossRef L. Vecchi, D. Pecko, N. van den Steen, M.H. Mamme, B. Özdirik, D. van Laethem, Y. van Ingelgem, J. Deconinck, and H. Terryn, A Modelling Approach on the Impact of an Oxide Layer on the Hydrogen Permeation through Iron Membranes in the Devanathan-Stachurski Cell, Electrochim. Acta, 2018, 286, p 139–147.CrossRef
15.
go back to reference L. Vecchi, H. Simillion, R. Montoya, D. van Laethem, E. van den Eeckhout, K. Verbeken, H. Terryn, J. Deconinck, and Y. van Ingelgem, Modelling of Hydrogen Permeation Experiments in Iron Alloys: Characterization of the Accessible Parameters-Part II-The Exit Side, Electrochim. Acta, 2018, 262, p 153–161.CrossRef L. Vecchi, H. Simillion, R. Montoya, D. van Laethem, E. van den Eeckhout, K. Verbeken, H. Terryn, J. Deconinck, and Y. van Ingelgem, Modelling of Hydrogen Permeation Experiments in Iron Alloys: Characterization of the Accessible Parameters-Part II-The Exit Side, Electrochim. Acta, 2018, 262, p 153–161.CrossRef
16.
go back to reference H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162.CrossRef H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162.CrossRef
17.
go back to reference E. Fallahmohammadi, F. Bolzoni, and L. Lazzari, Measurement of Lattice and Apparent Diffusion Coefficient of Hydrogen in X65 and F22 Pipeline Steels, Int. J. Hydrogen Energy, 2013, 38(5), p 2531–2543.CrossRef E. Fallahmohammadi, F. Bolzoni, and L. Lazzari, Measurement of Lattice and Apparent Diffusion Coefficient of Hydrogen in X65 and F22 Pipeline Steels, Int. J. Hydrogen Energy, 2013, 38(5), p 2531–2543.CrossRef
18.
go back to reference L. Vecchi, H. Simillion, R. Montoya, D. van Laethem, E. van den Eeckhout, K. Verbeken, H. Terryn, J. Deconinck, and Y. van Ingelgem, Modelling of Hydrogen Permeation Experiments in Iron Alloys: Characterization of the Accessible Parameters-Part I-The Entry Side, Electrochim. Acta, 2018, 262, p 57–65.CrossRef L. Vecchi, H. Simillion, R. Montoya, D. van Laethem, E. van den Eeckhout, K. Verbeken, H. Terryn, J. Deconinck, and Y. van Ingelgem, Modelling of Hydrogen Permeation Experiments in Iron Alloys: Characterization of the Accessible Parameters-Part I-The Entry Side, Electrochim. Acta, 2018, 262, p 57–65.CrossRef
19.
go back to reference C.-H. Wu, W. Krieger, and M. Rohwerder, On the Robustness of the Kelvin Probe Based Potentiometric Hydrogen Electrode Method and Its Application in Characterizing Effective Hydrogen Activity in Metal: 5 wt.% Ni Cold-Rolled Ferritic Steel as an Example, Sci. Technol. Adv. Mater., 2019, 20(1), p 1073–1089.PubMedPubMedCentralCrossRef C.-H. Wu, W. Krieger, and M. Rohwerder, On the Robustness of the Kelvin Probe Based Potentiometric Hydrogen Electrode Method and Its Application in Characterizing Effective Hydrogen Activity in Metal: 5 wt.% Ni Cold-Rolled Ferritic Steel as an Example, Sci. Technol. Adv. Mater., 2019, 20(1), p 1073–1089.PubMedPubMedCentralCrossRef
20.
go back to reference H. Addach, P. Berçot, M. Rezrazi, and J. Takadoum, Study of the Electrochemical Permeation of Hydrogen in Iron, Corros. Sci., 2009, 51(2), p 263–267.CrossRef H. Addach, P. Berçot, M. Rezrazi, and J. Takadoum, Study of the Electrochemical Permeation of Hydrogen in Iron, Corros. Sci., 2009, 51(2), p 263–267.CrossRef
21.
go back to reference E. van den Eeckhout, I. de Baere, T. Depover, and K. Verbeken, The Effect of a Constant Tensile Load on the Hydrogen Diffusivity in Dual Phase Steel by Electrochemical Permeation Experiments, Mater. Sci. Eng. A, 2020, 773, p 138872.CrossRef E. van den Eeckhout, I. de Baere, T. Depover, and K. Verbeken, The Effect of a Constant Tensile Load on the Hydrogen Diffusivity in Dual Phase Steel by Electrochemical Permeation Experiments, Mater. Sci. Eng. A, 2020, 773, p 138872.CrossRef
22.
go back to reference X.Y. Cheng and H.X. Zhang, A New Perspective on Hydrogen Diffusion and Hydrogen Embrittlement in Low-Alloy High Strength Steel, Corros. Sci., 2020, 174, p 108800.CrossRef X.Y. Cheng and H.X. Zhang, A New Perspective on Hydrogen Diffusion and Hydrogen Embrittlement in Low-Alloy High Strength Steel, Corros. Sci., 2020, 174, p 108800.CrossRef
23.
go back to reference S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, and X. Li, Effect of Nb on the Hydrogen-Induced Cracking of High-Strength Low-Alloy Steel, Corros. Sci., 2018, 139, p 83–96.CrossRef S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, and X. Li, Effect of Nb on the Hydrogen-Induced Cracking of High-Strength Low-Alloy Steel, Corros. Sci., 2018, 139, p 83–96.CrossRef
24.
go back to reference J.G. Yu, J.L. Luo, and P.R. Norton, Effects of Hydrogen on the Electronic Properties and Stability of the Passive Films on Iron, Appl. Surf. Sci., 2001, 177(1–2), p 129–138.CrossRef J.G. Yu, J.L. Luo, and P.R. Norton, Effects of Hydrogen on the Electronic Properties and Stability of the Passive Films on Iron, Appl. Surf. Sci., 2001, 177(1–2), p 129–138.CrossRef
25.
go back to reference K. Shi, S. Xiao, Q. Ruan, H. Wu, G. Chen, C. Zhou, S. Jiang, K. Xi, M. He, and P.K. Chu, Hydrogen Permeation Behavior and Mechanism of Multi-Layered Graphene Coatings and Mitigation of Hydrogen Embrittlement of Pipe Steel, Appl. Surf. Sci., 2022, 573, p 151529.CrossRef K. Shi, S. Xiao, Q. Ruan, H. Wu, G. Chen, C. Zhou, S. Jiang, K. Xi, M. He, and P.K. Chu, Hydrogen Permeation Behavior and Mechanism of Multi-Layered Graphene Coatings and Mitigation of Hydrogen Embrittlement of Pipe Steel, Appl. Surf. Sci., 2022, 573, p 151529.CrossRef
26.
go back to reference A. Drexler, B. Helic, Z. Silvayeh, K. Mraczek, C. Sommitsch, and J. Domitner, The Role of Hydrogen Diffusion, Trapping and Desorption in Dual Phase Steels, J. Mater. Sci., 2022, 57(7), p 4789–4805.CrossRef A. Drexler, B. Helic, Z. Silvayeh, K. Mraczek, C. Sommitsch, and J. Domitner, The Role of Hydrogen Diffusion, Trapping and Desorption in Dual Phase Steels, J. Mater. Sci., 2022, 57(7), p 4789–4805.CrossRef
27.
go back to reference S. Rengamani, S. Muralidharan, M. Anbu Kulandainathan, and S. Venkatakrishna Iyer, Inhibiting and Accelerating Effects of Aminophenols on the Corrosion and Permeation of Hydrogen through Mild Steel in Acidic Solutions, J. Appl. Electrochem., 1994, 24(4), p 355–360.CrossRef S. Rengamani, S. Muralidharan, M. Anbu Kulandainathan, and S. Venkatakrishna Iyer, Inhibiting and Accelerating Effects of Aminophenols on the Corrosion and Permeation of Hydrogen through Mild Steel in Acidic Solutions, J. Appl. Electrochem., 1994, 24(4), p 355–360.CrossRef
28.
go back to reference H.A. Duarte, D.M. See, B.N. Popov, and R.E. White, Organic Compounds as Effective Inhibitors for Hydrogen Permeation of Type 1010 Steel, Corrosion, 1998, 54(3), p 187–193.CrossRef H.A. Duarte, D.M. See, B.N. Popov, and R.E. White, Organic Compounds as Effective Inhibitors for Hydrogen Permeation of Type 1010 Steel, Corrosion, 1998, 54(3), p 187–193.CrossRef
29.
go back to reference R.L. Martin, Inhibition of Hydrogen Permeation in Steels Corroding in Sour Fluids, Corrosion, 1993, 49(8), p 694–701.CrossRef R.L. Martin, Inhibition of Hydrogen Permeation in Steels Corroding in Sour Fluids, Corrosion, 1993, 49(8), p 694–701.CrossRef
30.
go back to reference M.A. Quraishi, J. Rawat, and M. Ajmal, Dithiobiurets: A Novel Class of Acid Corrosion Inhibitors for Mild Steel, J. Appl. Electrochem., 2000, 30(6), p 745–751.CrossRef M.A. Quraishi, J. Rawat, and M. Ajmal, Dithiobiurets: A Novel Class of Acid Corrosion Inhibitors for Mild Steel, J. Appl. Electrochem., 2000, 30(6), p 745–751.CrossRef
31.
go back to reference M.G. Silva, R.G. de Araujo, R.L. Silvério, A.N.C. Costa, D.P. Sangi, L.F. Pedrosa, G.S. da Fonseca, L. da Silva, L.W. Coelho, and E.A. Ferreira, Inhibition Effects of Ionic and Non-Ionic Derivatives of Imidazole Compounds on Hydrogen Permeation during Carbon Steel Pickling, J. Market. Res., 2022, 16, p 1324–1338. M.G. Silva, R.G. de Araujo, R.L. Silvério, A.N.C. Costa, D.P. Sangi, L.F. Pedrosa, G.S. da Fonseca, L. da Silva, L.W. Coelho, and E.A. Ferreira, Inhibition Effects of Ionic and Non-Ionic Derivatives of Imidazole Compounds on Hydrogen Permeation during Carbon Steel Pickling, J. Market. Res., 2022, 16, p 1324–1338.
32.
go back to reference J. Aromaa, A. Pehkonen, S. Schmachtel, I. Galfi, and O. Forsén, Electrochemical Determination of Hydrogen Entry to HSLA Steel during Pickling, Adv. Mater. Sci. Eng., 2018, 2018, p 1–7.CrossRef J. Aromaa, A. Pehkonen, S. Schmachtel, I. Galfi, and O. Forsén, Electrochemical Determination of Hydrogen Entry to HSLA Steel during Pickling, Adv. Mater. Sci. Eng., 2018, 2018, p 1–7.CrossRef
33.
go back to reference V. Knotek, V. Hošek, D. Vojtěch, P. Novák, J. Šerák, A. Michalcová, F. Průša, T. Popela, M. Novák, Properties Of Magnesium Alloys For Hydrogen Storage, In: Proceedings of the 19th International Conference on Metallurgy and Materials, p. 1-6. (2010) V. Knotek, V. Hošek, D. Vojtěch, P. Novák, J. Šerák, A. Michalcová, F. Průša, T. Popela, M. Novák, Properties Of Magnesium Alloys For Hydrogen Storage, In: Proceedings of the 19th International Conference on Metallurgy and Materials, p. 1-6. (2010)
34.
go back to reference N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52(2), p 589–594.CrossRef N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52(2), p 589–594.CrossRef
35.
go back to reference L.C. Tsao, Stress-Corrosion Cracking Susceptibility of AZ31 Alloy after Varied Heat-Treatment in 35 Wt.% NaCl Solution, Int. J. Mater. Res., 2010, 101(9), p 1166–1171.CrossRef L.C. Tsao, Stress-Corrosion Cracking Susceptibility of AZ31 Alloy after Varied Heat-Treatment in 35 Wt.% NaCl Solution, Int. J. Mater. Res., 2010, 101(9), p 1166–1171.CrossRef
36.
go back to reference D. Wan, J. Wang, G. Wang, L. Lin, Z. Feng, and G. Yang, Precipitation and Responding Damping Behavior of Heat-Treated AZ31 Magnesium Alloy, Acta. Metall. Sinica (English Lett), 2009, 22(1), p 1–6.CrossRef D. Wan, J. Wang, G. Wang, L. Lin, Z. Feng, and G. Yang, Precipitation and Responding Damping Behavior of Heat-Treated AZ31 Magnesium Alloy, Acta. Metall. Sinica (English Lett), 2009, 22(1), p 1–6.CrossRef
37.
go back to reference N. Winzer, A. Atrens, W. Dietzel, G. Song, and K.U. Kainer, Evaluation of the Delayed Hydride Cracking Mechanism for Transgranular Stress Corrosion Cracking of Magnesium Alloys, Mater. Sci. Eng. A, 2007, 466(1–2), p 18–31.CrossRef N. Winzer, A. Atrens, W. Dietzel, G. Song, and K.U. Kainer, Evaluation of the Delayed Hydride Cracking Mechanism for Transgranular Stress Corrosion Cracking of Magnesium Alloys, Mater. Sci. Eng. A, 2007, 466(1–2), p 18–31.CrossRef
38.
go back to reference F. Qi, X. Zhang, G. Wu, W. Liu, L. Wen, H. Xie, S. Xu, and X. Tong, Effect of Heat Treatment on the Stress Corrosion Cracking Behavior of Cast Mg-3Nd-3Gd-0.2Zn-0.5Zr Alloy in a 3.5 Wt.% NaCl Salt Spray Environment, Mater. Charact., 2022, 183, p 111630.CrossRef F. Qi, X. Zhang, G. Wu, W. Liu, L. Wen, H. Xie, S. Xu, and X. Tong, Effect of Heat Treatment on the Stress Corrosion Cracking Behavior of Cast Mg-3Nd-3Gd-0.2Zn-0.5Zr Alloy in a 3.5 Wt.% NaCl Salt Spray Environment, Mater. Charact., 2022, 183, p 111630.CrossRef
39.
go back to reference X. Ma, S. Zhu, L. Wang, C. Ji, C. Ren, and S. Guan, Synthesis and Properties of a Bio-Composite Coating Formed on Magnesium Alloy by One-Step Method of Micro-Arc Oxidation, J. Alloys Compd., 2014, 590, p 247–253.CrossRef X. Ma, S. Zhu, L. Wang, C. Ji, C. Ren, and S. Guan, Synthesis and Properties of a Bio-Composite Coating Formed on Magnesium Alloy by One-Step Method of Micro-Arc Oxidation, J. Alloys Compd., 2014, 590, p 247–253.CrossRef
40.
go back to reference Z. Zhang, F. He, C. Huang, Z. Song, J. Yang, and X. Wang, Effect of Fe3+ and F- on Black Micro-arc Oxidation Ceramic Coating of Magnesium Alloy, Int. J. Appl. Ceram. Technol., 2022, 19(4), p 2203–2212.CrossRef Z. Zhang, F. He, C. Huang, Z. Song, J. Yang, and X. Wang, Effect of Fe3+ and F- on Black Micro-arc Oxidation Ceramic Coating of Magnesium Alloy, Int. J. Appl. Ceram. Technol., 2022, 19(4), p 2203–2212.CrossRef
41.
go back to reference M. Fazel, H.R. Salimijazi, and M. Shamanian, Improvement of Corrosion and Tribocorrosion Behavior of Pure Titanium by Subzero Anodic Spark Oxidation, ACS Appl. Mater. Interfaces, 2018, 10(17), p 15281–15287.PubMedCrossRef M. Fazel, H.R. Salimijazi, and M. Shamanian, Improvement of Corrosion and Tribocorrosion Behavior of Pure Titanium by Subzero Anodic Spark Oxidation, ACS Appl. Mater. Interfaces, 2018, 10(17), p 15281–15287.PubMedCrossRef
42.
go back to reference N. Nashrah, M.P. Kamil, D.K. Yoon, Y.G. Kim, and Y.G. Ko, Formation Mechanism of Oxide Layer on AZ31 Mg Alloy Subjected to Micro-Arc Oxidation Considering Surface Roughness, Appl. Surf. Sci., 2019, 497, p 143772.CrossRef N. Nashrah, M.P. Kamil, D.K. Yoon, Y.G. Kim, and Y.G. Ko, Formation Mechanism of Oxide Layer on AZ31 Mg Alloy Subjected to Micro-Arc Oxidation Considering Surface Roughness, Appl. Surf. Sci., 2019, 497, p 143772.CrossRef
43.
go back to reference Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism Properties and Applications, J. Magnesium Alloys, 2017, 5(1), p 74–132.CrossRef Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism Properties and Applications, J. Magnesium Alloys, 2017, 5(1), p 74–132.CrossRef
44.
go back to reference S. Fatimah, Y.G. Kim, D.K. Yoon, and Y.G. Ko, Anomaly of Corrosion Resistance of Pure Magnesium via Soft Plasma Electrolysis at Sub-Zero Temperature, Surf. Coat Technol., 2020, 385, p 125383.CrossRef S. Fatimah, Y.G. Kim, D.K. Yoon, and Y.G. Ko, Anomaly of Corrosion Resistance of Pure Magnesium via Soft Plasma Electrolysis at Sub-Zero Temperature, Surf. Coat Technol., 2020, 385, p 125383.CrossRef
45.
go back to reference A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, and K.U. Kainer, The Role of Anions in the Formation and Corrosion Resistance of the Plasma Electrolytic Oxidation Coatings, Surf. Coat. Technol., 2010, 204(9–10), p 1469–1478.CrossRef A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, and K.U. Kainer, The Role of Anions in the Formation and Corrosion Resistance of the Plasma Electrolytic Oxidation Coatings, Surf. Coat. Technol., 2010, 204(9–10), p 1469–1478.CrossRef
46.
go back to reference H. Fukuda and Y. Matsumoto, Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3 M KOH Solution, Corros. Sci., 2004, 46(9), p 2135–2142.CrossRef H. Fukuda and Y. Matsumoto, Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3 M KOH Solution, Corros. Sci., 2004, 46(9), p 2135–2142.CrossRef
47.
go back to reference R.F. Zhang, S.F. Zhang, J.H. Xiang, L.H. Zhang, Y.Q. Zhang, and S.B. Guo, Influence of Sodium Silicate Concentration on Properties of Micro Arc Oxidation Coatings Formed on AZ91HP Magnesium Alloys, Surf. Coat. Technol., 2012, 206(24), p 5072–5079.CrossRef R.F. Zhang, S.F. Zhang, J.H. Xiang, L.H. Zhang, Y.Q. Zhang, and S.B. Guo, Influence of Sodium Silicate Concentration on Properties of Micro Arc Oxidation Coatings Formed on AZ91HP Magnesium Alloys, Surf. Coat. Technol., 2012, 206(24), p 5072–5079.CrossRef
48.
go back to reference S. Salman, R. Ichino, and M. Okido, Influence of Calcium Hydroxide and Anodic Solution Temperature on Corrosion Property of Anodising Coatings Formed on AZ31 Mg Alloys, Surf. Eng., 2008, 24(3), p 242–245.CrossRef S. Salman, R. Ichino, and M. Okido, Influence of Calcium Hydroxide and Anodic Solution Temperature on Corrosion Property of Anodising Coatings Formed on AZ31 Mg Alloys, Surf. Eng., 2008, 24(3), p 242–245.CrossRef
49.
go back to reference L. Chai, X. Yu, Z. Yang, Y. Wang, and M. Okido, Anodizing of Magnesium Alloy AZ31 in Alkaline Solutions with Silicate under Continuous Sparking, Corros. Sci., 2008, 50(12), p 3274–3279.CrossRef L. Chai, X. Yu, Z. Yang, Y. Wang, and M. Okido, Anodizing of Magnesium Alloy AZ31 in Alkaline Solutions with Silicate under Continuous Sparking, Corros. Sci., 2008, 50(12), p 3274–3279.CrossRef
50.
go back to reference A.F. Yetim, Investigation of Wear Behavior of Titanium Oxide Films, Produced by Anodic Oxidation, on Commercially Pure Titanium in Vacuum Conditions, Surf. Coat. Technol., 2010, 205(6), p 1757–1763.CrossRef A.F. Yetim, Investigation of Wear Behavior of Titanium Oxide Films, Produced by Anodic Oxidation, on Commercially Pure Titanium in Vacuum Conditions, Surf. Coat. Technol., 2010, 205(6), p 1757–1763.CrossRef
52.
go back to reference L. Chen, Y. Gu, L. Liu, S. Liu, B. Hou, Q. Liu, and H. Ding, Effect of Ultrasonic Cold Forging Technology as the Pretreatment on the Corrosion Resistance of MAO Ca/P Coating on AZ31B Mg Alloy, J. Alloys Compd., 2015, 635, p 278–288.CrossRef L. Chen, Y. Gu, L. Liu, S. Liu, B. Hou, Q. Liu, and H. Ding, Effect of Ultrasonic Cold Forging Technology as the Pretreatment on the Corrosion Resistance of MAO Ca/P Coating on AZ31B Mg Alloy, J. Alloys Compd., 2015, 635, p 278–288.CrossRef
53.
go back to reference J. Jiang, Q. Zhou, J. Yu, A. Ma, D. Song, F. Lu, L. Zhang, D. Yang, and J. Chen, Comparative Analysis for Corrosion Resistance of Micro-Arc Oxidation Coatings on Coarse-Grained and Ultra-Fine Grained AZ91D Mg Alloy, Surf. Coat. Technol., 2013, 216, p 259–266.CrossRef J. Jiang, Q. Zhou, J. Yu, A. Ma, D. Song, F. Lu, L. Zhang, D. Yang, and J. Chen, Comparative Analysis for Corrosion Resistance of Micro-Arc Oxidation Coatings on Coarse-Grained and Ultra-Fine Grained AZ91D Mg Alloy, Surf. Coat. Technol., 2013, 216, p 259–266.CrossRef
54.
go back to reference X. Ly, S. Yang, and T. Nguyen, Effect of Equal Channel Angular Pressing as the Pretreatment on Microstructure and Corrosion Behavior of Micro-Arc Oxidation (MAO) Composite Coating on Biodegradable Mg-Zn-Ca Alloy, Surf. Coat. Technol., 2020, 395, p 125923.CrossRef X. Ly, S. Yang, and T. Nguyen, Effect of Equal Channel Angular Pressing as the Pretreatment on Microstructure and Corrosion Behavior of Micro-Arc Oxidation (MAO) Composite Coating on Biodegradable Mg-Zn-Ca Alloy, Surf. Coat. Technol., 2020, 395, p 125923.CrossRef
55.
go back to reference C. Liu, J. Liang, J. Zhou, Q. Li, Z. Peng, and L. Wang, Characterization and Corrosion Behavior of Plasma Electrolytic Oxidation Coated AZ91-T6 Magnesium Alloy, Surf. Coat. Technol., 2016, 304, p 179–187.CrossRef C. Liu, J. Liang, J. Zhou, Q. Li, Z. Peng, and L. Wang, Characterization and Corrosion Behavior of Plasma Electrolytic Oxidation Coated AZ91-T6 Magnesium Alloy, Surf. Coat. Technol., 2016, 304, p 179–187.CrossRef
56.
go back to reference Y. Xue, X. Pang, B. Jiang, H. Jahed, and D. Wang, Characterization of the Corrosion Performances of As-cast Mg-Al and Mg-Zn Magnesium Alloys with Microarc Oxidation Coatings, Mater. Corros., 2020, 71(6), p 992–1006.CrossRef Y. Xue, X. Pang, B. Jiang, H. Jahed, and D. Wang, Characterization of the Corrosion Performances of As-cast Mg-Al and Mg-Zn Magnesium Alloys with Microarc Oxidation Coatings, Mater. Corros., 2020, 71(6), p 992–1006.CrossRef
59.
go back to reference N.I. Zainal Abidin, D. Martin, and A. Atrens, Corrosion of High Purity Mg, AZ91 ZE41 and Mg2Zn0.2Mn in Hank’s Solution at Room Temperature, Corros. Sci., 2011, 53(3), p 862–872.CrossRef N.I. Zainal Abidin, D. Martin, and A. Atrens, Corrosion of High Purity Mg, AZ91 ZE41 and Mg2Zn0.2Mn in Hank’s Solution at Room Temperature, Corros. Sci., 2011, 53(3), p 862–872.CrossRef
60.
go back to reference G.L. Song, and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1(1), p 11–33.CrossRef G.L. Song, and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1(1), p 11–33.CrossRef
61.
go back to reference R.O. Hussein, X. Nie, and D.O. Northwood, An Investigation of Ceramic Coating Growth Mechanisms in Plasma Electrolytic Oxidation (PEO) Processing, Electrochim. Acta., 2013, 112, p 111–119.CrossRef R.O. Hussein, X. Nie, and D.O. Northwood, An Investigation of Ceramic Coating Growth Mechanisms in Plasma Electrolytic Oxidation (PEO) Processing, Electrochim. Acta., 2013, 112, p 111–119.CrossRef
62.
go back to reference S. Durdu, A. Aytaç, and M. Usta, Characterization and Corrosion Behavior of Ceramic Coating on Magnesium by Micro-Arc Oxidation, J. Alloys Compd., 2011, 509(34), p 8601–8606.CrossRef S. Durdu, A. Aytaç, and M. Usta, Characterization and Corrosion Behavior of Ceramic Coating on Magnesium by Micro-Arc Oxidation, J. Alloys Compd., 2011, 509(34), p 8601–8606.CrossRef
63.
go back to reference L. Liu, S. Yu, G. Zhu, Q. Li, E. Liu, W. Xiong, B. Wang, and X. Yang, Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Glass Microsphere Reinforced Mg Alloy Composite, J. Mater. Sci., 2021, 56(27), p 15379–15396.CrossRef L. Liu, S. Yu, G. Zhu, Q. Li, E. Liu, W. Xiong, B. Wang, and X. Yang, Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Glass Microsphere Reinforced Mg Alloy Composite, J. Mater. Sci., 2021, 56(27), p 15379–15396.CrossRef
64.
go back to reference L. Liu, S. Yu, E. Liu, Y. Zhao, B. Wang, Y. Niu, K. Zhang, G. Zhu, and Q. Li, Preparation and Characterization of Micro-Arc Oxidation Coating on Hollow Glass Microspheres/Mg Alloy Degradable Composite, Mater. Chem. Phys., 2021, 271, p 124935.CrossRef L. Liu, S. Yu, E. Liu, Y. Zhao, B. Wang, Y. Niu, K. Zhang, G. Zhu, and Q. Li, Preparation and Characterization of Micro-Arc Oxidation Coating on Hollow Glass Microspheres/Mg Alloy Degradable Composite, Mater. Chem. Phys., 2021, 271, p 124935.CrossRef
65.
go back to reference E. Barsoukov, and J.R. Macdonald, Impedance Spectroscopy, Wiley, Hoboken, New Jersey, U.S., 2005.CrossRef E. Barsoukov, and J.R. Macdonald, Impedance Spectroscopy, Wiley, Hoboken, New Jersey, U.S., 2005.CrossRef
66.
go back to reference P. Zhang and Y. Zuo, Relationship between Porosity, Pore Parameters and Properties of Microarc Oxidation Film on AZ91D Magnesium Alloy, Results Phys., 2019, 12, p 2044–2054.CrossRef P. Zhang and Y. Zuo, Relationship between Porosity, Pore Parameters and Properties of Microarc Oxidation Film on AZ91D Magnesium Alloy, Results Phys., 2019, 12, p 2044–2054.CrossRef
67.
go back to reference X. He, H. Liang, Z. Yan, and R. Bai, Stress Corrosion Cracking Behavior of Micro-Arc Oxidized AZ31 Alloy, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2020, 234(8), p 1640–1652.CrossRef X. He, H. Liang, Z. Yan, and R. Bai, Stress Corrosion Cracking Behavior of Micro-Arc Oxidized AZ31 Alloy, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2020, 234(8), p 1640–1652.CrossRef
Metadata
Title
Effect of Aging on Corrosion Resistance of AZ31 Magnesium Alloy
Authors
Pâmella S. Rodrigues
Isadora R. Zenóbio
Talita I. da Silva
Camila Q. C. Fernandes
Talita G. de Sousa
José A. de Castro
Gláucio S. da Fonseca
José A. O. Huguenin
Elivelton A. Ferreira
Publication date
20-04-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08170-3

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners