Skip to main content
Top
Published in: Quantum Information Processing 12/2017

01-12-2017

Quantum private comparison protocol based on the entanglement swapping between \(\chi ^+\) state and W-Class state

Authors: Ling Xu, Zhiwen Zhao

Published in: Quantum Information Processing | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum private comparison (QPC) protocol, including Alice, Bob and the third party Charlie, aims at comparing Alice and Bob’s secret inputs correctly without leaking them. Firstly, \(\chi ^+\) state and W-Class state are used to conduct the entanglement swapping in this protocol. Either the basis \(\{|\phi ^\pm \rangle ,|\psi ^\pm \rangle \}\) or the basis \(\{|\chi ^\pm \rangle ,|\omega ^\pm \rangle \}\) is chosen by Alice and Bob based on the predetermined value to measure the particle pairs. And three bits of secret inputs can be compared in this protocol in every comparison time, while most of previous QPC protocols can only compare one or two bits. The qubit efficiency of this protocol is 60% more than others, which are 50% at most. Secondly, if the eavesdropper intends to obtain the secret inputs, it is important and primary to get the measurement results of particle pairs. In this protocol, even if the eavesdropper gets the accurate particle pairs, he cannot get the right measurement results without the right basis. Finally, this protocol is analyzed to be able to defend the secret inputs against various kinds of attack.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, p. 175C179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, p. 175C179 (1984)
2.
go back to reference Jiang, C., Yu, Z.W., Wang, X.B.: Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A 94(6), 062323 (2016)ADSCrossRef Jiang, C., Yu, Z.W., Wang, X.B.: Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A 94(6), 062323 (2016)ADSCrossRef
3.
go back to reference Naik, R.L., Reddy, P.C.: Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach. Quantum Inf. Process. 14(12), 4557–4574 (2015)ADSMathSciNetCrossRefMATH Naik, R.L., Reddy, P.C.: Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach. Quantum Inf. Process. 14(12), 4557–4574 (2015)ADSMathSciNetCrossRefMATH
4.
go back to reference Wang, L., Zhao, S.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf. Process. 16(4), 100 (2017)ADSCrossRefMATH Wang, L., Zhao, S.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf. Process. 16(4), 100 (2017)ADSCrossRefMATH
5.
go back to reference Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)ADSMathSciNetCrossRefMATH Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)ADSMathSciNetCrossRefMATH
6.
go back to reference Gao, F., Qin, S.J., Guo, F.Z., et al.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)ADSCrossRef Gao, F., Qin, S.J., Guo, F.Z., et al.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)ADSCrossRef
7.
go back to reference Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution by constructing nonorthogonal states with Bell states. Int. J. Mod. Phys. B 24(23), 4611–4618 (2010)ADSMathSciNetCrossRefMATH Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution by constructing nonorthogonal states with Bell states. Int. J. Mod. Phys. B 24(23), 4611–4618 (2010)ADSMathSciNetCrossRefMATH
8.
go back to reference Zhao, Z.W., Luo, Y., Zhao, Z.J., Long, H.M.: A secure quantum key distribution scheme based on variable quantum encoding algorithms. Chin. Opt. Lett. 9(3), 032702 (2011)ADSCrossRef Zhao, Z.W., Luo, Y., Zhao, Z.J., Long, H.M.: A secure quantum key distribution scheme based on variable quantum encoding algorithms. Chin. Opt. Lett. 9(3), 032702 (2011)ADSCrossRef
9.
go back to reference Guerra, A.G.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 4747–4758 (2016)ADSMathSciNetCrossRefMATH Guerra, A.G.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 4747–4758 (2016)ADSMathSciNetCrossRefMATH
10.
go back to reference Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189 (2008)ADSCrossRef Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189 (2008)ADSCrossRef
11.
go back to reference Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)ADSMathSciNetCrossRefMATH Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)ADSMathSciNetCrossRefMATH
12.
go back to reference Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)ADSMathSciNetCrossRefMATH Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)ADSMathSciNetCrossRefMATH
13.
go back to reference Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28(2), 020303 (2011)ADSCrossRef Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28(2), 020303 (2011)ADSCrossRef
14.
go back to reference Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRef Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRef
15.
go back to reference Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739–753 (2015)ADSMathSciNetCrossRefMATH Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739–753 (2015)ADSMathSciNetCrossRefMATH
17.
go back to reference He, X.L., Yang, C.P.: Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Inf. Process. 14(12), 4461–4474 (2015)ADSMathSciNetCrossRefMATH He, X.L., Yang, C.P.: Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Inf. Process. 14(12), 4461–4474 (2015)ADSMathSciNetCrossRefMATH
18.
go back to reference Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 72(3), 036302 (2005)ADSCrossRef Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 72(3), 036302 (2005)ADSCrossRef
21.
go back to reference Tavakoli, A., Herbauts, I., Zukowski, M., et al.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)ADSCrossRef Tavakoli, A., Herbauts, I., Zukowski, M., et al.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)ADSCrossRef
22.
go back to reference Yao, Y., Gao, M., Li, M., et al.: Quantum cloning attacks against PUF-based quantum authentication systems. Quantum Inf. Process. 15(8), 3311–3325 (2016)ADSMathSciNetCrossRefMATH Yao, Y., Gao, M., Li, M., et al.: Quantum cloning attacks against PUF-based quantum authentication systems. Quantum Inf. Process. 15(8), 3311–3325 (2016)ADSMathSciNetCrossRefMATH
24.
go back to reference Yuan, H., Liu, Y.M., Pan, G.Z., Zhang, G., Zhu, J., Zhang, Z.J.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13(11), 2535–2549 (2014)MathSciNetCrossRefMATH Yuan, H., Liu, Y.M., Pan, G.Z., Zhang, G., Zhu, J., Zhang, Z.J.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13(11), 2535–2549 (2014)MathSciNetCrossRefMATH
25.
go back to reference Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16(7), 169 (2017)ADSCrossRefMATH Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16(7), 169 (2017)ADSCrossRefMATH
26.
go back to reference Liu, W.J., Wang, H.B., Yuan, G.L., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)ADSMathSciNetCrossRefMATH Liu, W.J., Wang, H.B., Yuan, G.L., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)ADSMathSciNetCrossRefMATH
27.
go back to reference Luo, Y., Zhao, Z.W., Zhao, Z.J., Long, H.M., Su, W., Yang, Y.X.: The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution. Quantum Inf. Process. 12(1), 295–302 (2013)ADSCrossRefMATH Luo, Y., Zhao, Z.W., Zhao, Z.J., Long, H.M., Su, W., Yang, Y.X.: The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution. Quantum Inf. Process. 12(1), 295–302 (2013)ADSCrossRefMATH
28.
go back to reference Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)ADSMathSciNetCrossRefMATH Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)ADSMathSciNetCrossRefMATH
29.
go back to reference Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)ADSMathSciNetCrossRefMATH Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)ADSMathSciNetCrossRefMATH
30.
go back to reference Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)ADSMathSciNetCrossRefMATH Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)ADSMathSciNetCrossRefMATH
31.
go back to reference Huang, W., Wen, Q.Y., Liu, B., Gao, F.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)MathSciNetCrossRefMATH Huang, W., Wen, Q.Y., Liu, B., Gao, F.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)MathSciNetCrossRefMATH
32.
34.
35.
go back to reference Li, Y.B., Wen, Q.Y., Li, Z.C., et al.: Cheat sensitive quantum bit commitment via pre-and post-selected quantum states. Quantum Inf. Process. 13(1), 141–149 (2014)ADSCrossRefMATH Li, Y.B., Wen, Q.Y., Li, Z.C., et al.: Cheat sensitive quantum bit commitment via pre-and post-selected quantum states. Quantum Inf. Process. 13(1), 141–149 (2014)ADSCrossRefMATH
36.
go back to reference Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 98–108 (2015)CrossRef Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 98–108 (2015)CrossRef
37.
38.
go back to reference Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)CrossRef Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)CrossRef
39.
go back to reference Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)ADSCrossRef Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)ADSCrossRef
40.
go back to reference Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)CrossRef Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)CrossRef
41.
go back to reference Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982) Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)
42.
go back to reference Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 workshop on New security paradigms, Cloudcroft, America, ACM, New York, pp. 13–22 (2001) Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 workshop on New security paradigms, Cloudcroft, America, ACM, New York, pp. 13–22 (2001)
43.
go back to reference Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)ADSMathSciNetCrossRefMATH Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)ADSMathSciNetCrossRefMATH
44.
go back to reference Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetCrossRefMATH Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetCrossRefMATH
45.
go back to reference Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)ADSCrossRef Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)ADSCrossRef
46.
go back to reference Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRef Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRef
47.
48.
go back to reference Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)MathSciNetCrossRefMATH Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)MathSciNetCrossRefMATH
49.
go back to reference Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)ADSMathSciNetCrossRefMATH Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)ADSMathSciNetCrossRefMATH
50.
go back to reference Chang, Y., Zhang, W.B., Zhang, S.B., et al.: Quantum private comparison of equality based on five-particle cluster state. Commun. Theor. Phys. 66(6), 621 (2016)ADSCrossRef Chang, Y., Zhang, W.B., Zhang, S.B., et al.: Quantum private comparison of equality based on five-particle cluster state. Commun. Theor. Phys. 66(6), 621 (2016)ADSCrossRef
51.
go back to reference Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147 (2017)ADSCrossRef Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147 (2017)ADSCrossRef
52.
go back to reference Wang, F., Luo, M., Li, H., et al.: Quantum private comparison based on quantum dense coding. Sci. China Inf. Sci. 59(11), 112501 (2016)CrossRef Wang, F., Luo, M., Li, H., et al.: Quantum private comparison based on quantum dense coding. Sci. China Inf. Sci. 59(11), 112501 (2016)CrossRef
53.
go back to reference Zhao, Z., Yang, T., Chen, Z.B., Du, J.F., Pan, J.W.: Deterministic and highly efficient quantum cryptography with entangled photon pairs. arXiv:quant-ph/0211098 (2002) Zhao, Z., Yang, T., Chen, Z.B., Du, J.F., Pan, J.W.: Deterministic and highly efficient quantum cryptography with entangled photon pairs. arXiv:​quant-ph/​0211098 (2002)
55.
go back to reference Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRef Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRef
56.
go back to reference Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)ADSCrossRef Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)ADSCrossRef
57.
go back to reference Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSCrossRef Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSCrossRef
58.
go back to reference Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)ADSCrossRefMATH Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)ADSCrossRefMATH
59.
go back to reference Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefMATH Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefMATH
Metadata
Title
Quantum private comparison protocol based on the entanglement swapping between state and W-Class state
Authors
Ling Xu
Zhiwen Zhao
Publication date
01-12-2017
Publisher
Springer US
Published in
Quantum Information Processing / Issue 12/2017
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1755-z

Other articles of this Issue 12/2017

Quantum Information Processing 12/2017 Go to the issue