Skip to main content
Erschienen in: Quantum Information Processing 2/2015

01.02.2015

Efficient controlled quantum secure direct communication based on GHZ-like states

verfasst von: Shima Hassanpour, Monireh Houshmand

Erschienen in: Quantum Information Processing | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a three-party controlled quantum secure direct communication protocol based on GHZ-like state is proposed. In this scheme, the receiver can obtain the sender’s two secret bits under the permission of the controller. By using entanglement swapping, no qubits carrying secret messages are transmitted. Therefore, if the perfect quantum channel is used, the protocol is completely secure. The motivation behind utilizing GHZ-like state as a quantum channel is that if a qubit is lost in the GHZ-like state, the other two qubits are still entangled. The proposed protocol improves the efficiency of the previous ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ba An, N.: Efficient semi-direct three-party quantum secure exchange ofinformation. Phys. Lett. A 360, 518–521 (2002)ADSCrossRef Ba An, N.: Efficient semi-direct three-party quantum secure exchange ofinformation. Phys. Lett. A 360, 518–521 (2002)ADSCrossRef
2.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing Bangalore press, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing Bangalore press, India, pp. 175–179 (1984)
3.
Zurück zum Zitat Beige, A., Engler, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)ADS Beige, A., Engler, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)ADS
4.
Zurück zum Zitat Deng, F.G., Long, G.L.: Secure direct communication with a quantum one time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef Deng, F.G., Long, G.L.: Secure direct communication with a quantum one time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef
5.
Zurück zum Zitat Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358, 256–258 (2006)ADSCrossRefMATH Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358, 256–258 (2006)ADSCrossRefMATH
6.
7.
Zurück zum Zitat Li, K., Huang, X.Y., Teng, J.H., Li, Z.H.: Quantum secure direct communication based on secret Initial states of EPR pairs. In: Third International Conference on Multimedia Information Networking and Security, pp. 73–76 (2011) Li, K., Huang, X.Y., Teng, J.H., Li, Z.H.: Quantum secure direct communication based on secret Initial states of EPR pairs. In: Third International Conference on Multimedia Information Networking and Security, pp. 73–76 (2011)
8.
Zurück zum Zitat Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
9.
Zurück zum Zitat Wójcik, A.: Eavesdropping on the “ping-pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)ADSCrossRef Wójcik, A.: Eavesdropping on the “ping-pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)ADSCrossRef
10.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
11.
Zurück zum Zitat Yan, F.L., Zhang, X.Q.: Secure direct communication using Einstein–Podolsky–Rosen pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)ADSCrossRef Yan, F.L., Zhang, X.Q.: Secure direct communication using Einstein–Podolsky–Rosen pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)ADSCrossRef
12.
Zurück zum Zitat Xia, Y., Fu, C.B., Li, F.Y., Zhang, S.: Controlled secure direct communication by using GHZ entangled state. J. Korean Phys. Soc. 47, 753–756 (2005) Xia, Y., Fu, C.B., Li, F.Y., Zhang, S.: Controlled secure direct communication by using GHZ entangled state. J. Korean Phys. Soc. 47, 753–756 (2005)
13.
Zurück zum Zitat Man, Z.X., Xia, Y.J., Nguyen, : Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39, 3855–3864 (2006)ADSCrossRef Man, Z.X., Xia, Y.J., Nguyen, : Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39, 3855–3864 (2006)ADSCrossRef
14.
Zurück zum Zitat Zhang, X., Xie, S., Wang, D.: Three-party quantum secure direct communication based on partially entangled state. In: International Conference on Mechatronic Science, Electric Engineering and Computer, pp. 1555–1558 (2011) Zhang, X., Xie, S., Wang, D.: Three-party quantum secure direct communication based on partially entangled state. In: International Conference on Mechatronic Science, Electric Engineering and Computer, pp. 1555–1558 (2011)
15.
Zurück zum Zitat Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290 (2006)ADSCrossRef Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290 (2006)ADSCrossRef
16.
Zurück zum Zitat Liu, J., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652 (2006)ADSCrossRef Liu, J., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652 (2006)ADSCrossRef
17.
18.
Zurück zum Zitat Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with W state. Commun. Theor. Phys. 48, 637–640 (2007)ADSCrossRefMathSciNet Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with W state. Commun. Theor. Phys. 48, 637–640 (2007)ADSCrossRefMathSciNet
19.
Zurück zum Zitat Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495–1498 (2008)ADSCrossRefMathSciNet Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495–1498 (2008)ADSCrossRefMathSciNet
20.
Zurück zum Zitat Gao, T., Yan, F.: Controlled quantum teleportation and secure direct communication. Chin. Phys. Soc. 14, 893–897 (2005)ADSCrossRef Gao, T., Yan, F.: Controlled quantum teleportation and secure direct communication. Chin. Phys. Soc. 14, 893–897 (2005)ADSCrossRef
21.
Zurück zum Zitat Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)ADSCrossRef Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)ADSCrossRef
22.
Zurück zum Zitat Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)ADSCrossRef Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)ADSCrossRef
23.
24.
Zurück zum Zitat Kao, S.H., Hwang, T.: Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22, 060308 (2013)ADSCrossRef Kao, S.H., Hwang, T.: Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22, 060308 (2013)ADSCrossRef
25.
Zurück zum Zitat Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60–66 (2005)ADSCrossRefMATH Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60–66 (2005)ADSCrossRefMATH
26.
Zurück zum Zitat Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSCrossRefMathSciNet Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSCrossRefMathSciNet
27.
Zurück zum Zitat Wang, J., Zhang, Q., Tang, C.J.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47, 454–458 (2007)ADSCrossRefMATH Wang, J., Zhang, Q., Tang, C.J.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47, 454–458 (2007)ADSCrossRefMATH
28.
Zurück zum Zitat Lin, S., Goa, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007)ADSCrossRefMathSciNet Lin, S., Goa, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007)ADSCrossRefMathSciNet
30.
Zurück zum Zitat Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365–380 (2013)ADSCrossRefMATHMathSciNet Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365–380 (2013)ADSCrossRefMATHMathSciNet
31.
Zurück zum Zitat Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRef Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRef
32.
Zurück zum Zitat Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457–1460 (2011)ADSCrossRef Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457–1460 (2011)ADSCrossRef
33.
Zurück zum Zitat Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405–2416 (2013)ADSCrossRefMATHMathSciNet Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405–2416 (2013)ADSCrossRefMATHMathSciNet
34.
Zurück zum Zitat Liu, W., Chen, H., Ma, T., Liu, J.: Efficient deterministic secure quantum communication with cluster state. In: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 722–726 (2008) Liu, W., Chen, H., Ma, T., Liu, J.: Efficient deterministic secure quantum communication with cluster state. In: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 722–726 (2008)
35.
Zurück zum Zitat Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)ADSCrossRef Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)ADSCrossRef
36.
Zurück zum Zitat Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51, 2787–2797 (2012)CrossRefMATH Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51, 2787–2797 (2012)CrossRefMATH
37.
Zurück zum Zitat Houshmand, M., Houshmand, M., Mashhadi, H.R.: Game theory based view to the quantum key distribution BB84 protocol. In: Third International Symposium on Intelligent Information Technology and Security Informatics, pp. 332–336 (2010) Houshmand, M., Houshmand, M., Mashhadi, H.R.: Game theory based view to the quantum key distribution BB84 protocol. In: Third International Symposium on Intelligent Information Technology and Security Informatics, pp. 332–336 (2010)
38.
Zurück zum Zitat Houshmand, M., Hosseini-Kayat, S.: An entanglement-based quantum key distribution protocol. In: International ISC Conference on Information Security and Cryptography, Mashhad, Iran, (September 2011) Houshmand, M., Hosseini-Kayat, S.: An entanglement-based quantum key distribution protocol. In: International ISC Conference on Information Security and Cryptography, Mashhad, Iran, (September 2011)
39.
Zurück zum Zitat Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54, 1019–1022 (2010)CrossRefMATH Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54, 1019–1022 (2010)CrossRefMATH
40.
41.
Zurück zum Zitat Prakash, H., Maurya, A.K.: Quantum teleportation using entangled 3-qubit states and the ’magic bases’. Opt. Commun. 284, 5024–5030 (2011)ADSCrossRef Prakash, H., Maurya, A.K.: Quantum teleportation using entangled 3-qubit states and the ’magic bases’. Opt. Commun. 284, 5024–5030 (2011)ADSCrossRef
42.
Zurück zum Zitat Nandi, H., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)CrossRefMATH Nandi, H., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)CrossRefMATH
43.
Zurück zum Zitat McMahon, D.: Quantum Computing Explained. Wiley Interscience, New Jersey (2007)CrossRef McMahon, D.: Quantum Computing Explained. Wiley Interscience, New Jersey (2007)CrossRef
44.
Zurück zum Zitat Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004) Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)
45.
Zurück zum Zitat Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007) Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)
46.
Zurück zum Zitat DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., et al.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009) DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., et al.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)
47.
Zurück zum Zitat Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., et al.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009) Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., et al.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009)
48.
Zurück zum Zitat Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak, R.C., Chen, Y., et al.: Implementing the Quantum von Neumann Architecture with Superconducting Circuits. Science 334, 61–65 (2011) Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak, R.C., Chen, Y., et al.: Implementing the Quantum von Neumann Architecture with Superconducting Circuits. Science 334, 61–65 (2011)
49.
Zurück zum Zitat Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012) Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012)
50.
Zurück zum Zitat O’Brien, J.L., Pryde, G.J., White, A,G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003) O’Brien, J.L., Pryde, G.J., White, A,G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)
51.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013) Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)
52.
Zurück zum Zitat Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282, 2460–2463 (2009)ADSCrossRef Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282, 2460–2463 (2009)ADSCrossRef
53.
Zurück zum Zitat Chuo, Y.H., Lin, F.J., Zeng, G.J., Chu, T.H.: An efficient controlled bidirectional quantum secure direct communication by using only EPR pairs. Int. Conf. Nanotechnol. 866–871 (2013). doi:10.1109/NANO.2013.6720932 Chuo, Y.H., Lin, F.J., Zeng, G.J., Chu, T.H.: An efficient controlled bidirectional quantum secure direct communication by using only EPR pairs. Int. Conf. Nanotechnol. 866–871 (2013). doi:10.​1109/​NANO.​2013.​6720932
54.
Zurück zum Zitat Kao, S.H., Tsai, C.W., Hwang, T.: Enhanced multiparty controlled QSDC using GHZ state. Commun. Theor. Phys. 55, 1007–1011 (2011)ADSCrossRefMATH Kao, S.H., Tsai, C.W., Hwang, T.: Enhanced multiparty controlled QSDC using GHZ state. Commun. Theor. Phys. 55, 1007–1011 (2011)ADSCrossRefMATH
Metadaten
Titel
Efficient controlled quantum secure direct communication based on GHZ-like states
verfasst von
Shima Hassanpour
Monireh Houshmand
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2015
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-014-0866-z

Weitere Artikel der Ausgabe 2/2015

Quantum Information Processing 2/2015 Zur Ausgabe

OriginalPaper

REE from EOF

Neuer Inhalt