Skip to main content
Top
Published in: Polymer Science, Series D 2/2023

01-06-2023

Radiation Aging of Polymer Composite Materials

Authors: M. P. Lebedev, O. V. Startsev

Published in: Polymer Science, Series D | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A review of studies of radiation aging of polymer composite materials (PCMs) based on epoxy binders is presented. Physicochemical and structural transformations in polymer matrices and reinforcing fillers of PCMs under the action of protons, electrons, neutrons, and γ rays are considered. The change in the strength characteristics of glass-reinforced plastics based on the DGEBA epoxy matrix after radiation exposure at doses of 1, 10, and 100 MGy is compared. An analysis of the dose dependences of the glass transition temperature of epoxy matrices shows that the results of radiation exposure depend on the brand of material, the hardener used, the state of the filler surface, the type, the conditions, and the radiation exposure dose. The limits of radiation exposure are determined, before reaching which the accumulation of radicals occurs, causing further radiation aging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. R. Klinshpont, V. K. Milinchuk, and V. I. Tupikov, “Radiation resistance of polymeric materials,” At. Energ., No. 5, 422–428 (1994). E. R. Klinshpont, V. K. Milinchuk, and V. I. Tupikov, “Radiation resistance of polymeric materials,” At. Energ., No. 5, 422–428 (1994).
2.
go back to reference Stability and Stabilization of Polymers under Irradiation (IAEA, Vienna. 1999). Stability and Stabilization of Polymers under Irradiation (IAEA, Vienna. 1999).
3.
go back to reference L. W. McKeen, The Effect of Radiation on Properties of Polymers (William Andrew, 2020). L. W. McKeen, The Effect of Radiation on Properties of Polymers (William Andrew, 2020).
5.
go back to reference J. D. Memory, R. E. Fornes, and R. D. Gilbert, “Radiation effects on graphite fiber reinforced composites,” J. Reinf. Plast. Compos. 7, 33–65 (1988).CrossRef J. D. Memory, R. E. Fornes, and R. D. Gilbert, “Radiation effects on graphite fiber reinforced composites,” J. Reinf. Plast. Compos. 7, 33–65 (1988).CrossRef
6.
go back to reference N. J. Simom, “A review of irradiation effects on organic-matrix insulation,” Technical Report NISTIR 93- 3999 (Nat. Inst. Stand. Technol. (1993). N. J. Simom, “A review of irradiation effects on organic-matrix insulation,” Technical Report NISTIR 93- 3999 (Nat. Inst. Stand. Technol. (1993).
7.
go back to reference F. Hacioglu et al., “Characterization of carbon fiber and glass fiber reinforced polycarbonate composites and their behavior under gamma irradiation,” Prog. Nucl. En. 134, 103665 (2021).CrossRef F. Hacioglu et al., “Characterization of carbon fiber and glass fiber reinforced polycarbonate composites and their behavior under gamma irradiation,” Prog. Nucl. En. 134, 103665 (2021).CrossRef
8.
go back to reference E. A. Golovina and V. B. Markin, Fundamentals of Radiation Materials Science (Altai Gos. Univ., Barnaul, 2008) [in Russian]. E. A. Golovina and V. B. Markin, Fundamentals of Radiation Materials Science (Altai Gos. Univ., Barnaul, 2008) [in Russian].
9.
go back to reference I. N. Bekman, Sources of Ionizing Radiation. Lecture 9. Nuclear Industry. Lecture Course (Mosk. Gos. Univ., Moscow, 2005) [in Russian]. I. N. Bekman, Sources of Ionizing Radiation. Lecture 9. Nuclear Industry. Lecture Course (Mosk. Gos. Univ., Moscow, 2005) [in Russian].
10.
go back to reference V. V. Petrov and Yu. A. Pupkov, “Tests at the Institute of Nuclear Physics of the radiation resistance of materials used in the creation of magnetic systems of accelerators,” (Inst. Nucl. Phys. Siberian Branch, Russ. Acad. Sci., Novosibirsk, 2010). V. V. Petrov and Yu. A. Pupkov, “Tests at the Institute of Nuclear Physics of the radiation resistance of materials used in the creation of magnetic systems of accelerators,” (Inst. Nucl. Phys. Siberian Branch, Russ. Acad. Sci., Novosibirsk, 2010).
11.
go back to reference G. Yu, et al., “Effect of proton irradiation on mechanical properties of carbon composites,” J. Spacecr. Rockets 43, 505–508 (2006).CrossRef G. Yu, et al., “Effect of proton irradiation on mechanical properties of carbon composites,” J. Spacecr. Rockets 43, 505–508 (2006).CrossRef
12.
go back to reference N. Grassie and G. Scott, Polymer Degradation and Stabilisation (Cambridge Univ. Press, New York, 1988, Mir, Moscow, 1988). N. Grassie and G. Scott, Polymer Degradation and Stabilisation (Cambridge Univ. Press, New York, 1988, Mir, Moscow, 1988).
13.
go back to reference Z. Xu, et al., “Effect of g-ray radiation on the polyacrylonitrile based carbon fibers,” Rad. Phys. Chem. 79, 839–843 (2010).CrossRef Z. Xu, et al., “Effect of g-ray radiation on the polyacrylonitrile based carbon fibers,” Rad. Phys. Chem. 79, 839–843 (2010).CrossRef
14.
go back to reference S. Egusa, “Radiation resistance of polymer composites at 77 K: Effects of reinforcing fabric type, specimen thickness, radiation type and irradiation atmosphere,” Cryogenics 31, 7–15 (1991).CrossRef S. Egusa, “Radiation resistance of polymer composites at 77 K: Effects of reinforcing fabric type, specimen thickness, radiation type and irradiation atmosphere,” Cryogenics 31, 7–15 (1991).CrossRef
15.
go back to reference S. Egusa, M. A. Kirk, and R. C. Birtcher, “Effects of neutron irradiation on polymer matrix composites at 5 K and at room temperature I. Absorbed-dose calculation,” J. Nucl. Mater. 148, 43–52 (1987).CrossRef S. Egusa, M. A. Kirk, and R. C. Birtcher, “Effects of neutron irradiation on polymer matrix composites at 5 K and at room temperature I. Absorbed-dose calculation,” J. Nucl. Mater. 148, 43–52 (1987).CrossRef
16.
go back to reference S. Egusa, M. A. Kirk, and R. C. Birtcher, “Effects of neutron irradiation on polymer matrix composites at 5 K and at room temperature II. Degradation of mechanical properties,” J. Nucl. Mater. 148, 53–60 (1987).CrossRef S. Egusa, M. A. Kirk, and R. C. Birtcher, “Effects of neutron irradiation on polymer matrix composites at 5 K and at room temperature II. Degradation of mechanical properties,” J. Nucl. Mater. 148, 53–60 (1987).CrossRef
17.
go back to reference S. Nishijima, et al., “Radiation damage of organic composite material for fusion magnet,” Cryogenics 31, 273–276 (1991).CrossRef S. Nishijima, et al., “Radiation damage of organic composite material for fusion magnet,” Cryogenics 31, 273–276 (1991).CrossRef
18.
go back to reference F. Diao et al., “γ-Ray irradiation stability and damage mechanism of glycidyl amine epoxy resin,” Nucl. Instrum. Methods Phys. Res., Sect. B 383, 227–233 (2016). F. Diao et al., “γ-Ray irradiation stability and damage mechanism of glycidyl amine epoxy resin,” Nucl. Instrum. Methods Phys. Res., Sect. B 383, 227–233 (2016).
19.
go back to reference R. Li et al., “Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite,” J. Nucl. Mater. 466, 100–107 (2015).CrossRef R. Li et al., “Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite,” J. Nucl. Mater. 466, 100–107 (2015).CrossRef
20.
go back to reference N. Rami et al., “Study on radiochemical ageing of DGEBA/MDA filled with carbon black and glass powder under GAMMA irradiation,” Res. Rev. Polym. 4, 87–93 (2013). N. Rami et al., “Study on radiochemical ageing of DGEBA/MDA filled with carbon black and glass powder under GAMMA irradiation,” Res. Rev. Polym. 4, 87–93 (2013).
21.
go back to reference A. P. Chakraverty et al., “Gamma-irradiation of E-glass/epoxy composite: a study of its mechanical and thermal sustainability,” Mater. Sci. Forum 978, 296–303 (2020).CrossRef A. P. Chakraverty et al., “Gamma-irradiation of E-glass/epoxy composite: a study of its mechanical and thermal sustainability,” Mater. Sci. Forum 978, 296–303 (2020).CrossRef
22.
go back to reference M. Saiyad, N. M. Devashrayee, and R. K. Mewada, “The influence of stabilisers on resistance to gamma radiation for epoxy based polymeric composite material,” Composites: 57 Part B 57, 71–79 (2014). M. Saiyad, N. M. Devashrayee, and R. K. Mewada, “The influence of stabilisers on resistance to gamma radiation for epoxy based polymeric composite material,” Composites: 57 Part B 57, 71–79 (2014).
23.
go back to reference F. Guarino, C. Hauviller, and G. M. Kenny, “Radiation effects on room temperature epoxy adhesive molecular structure: mechanical tests and correlation with calorimetric and outgassing analyses,” J. Macromol. Sci. Part B: Phys. 38, 623–633 (1999).CrossRef F. Guarino, C. Hauviller, and G. M. Kenny, “Radiation effects on room temperature epoxy adhesive molecular structure: mechanical tests and correlation with calorimetric and outgassing analyses,” J. Macromol. Sci. Part B: Phys. 38, 623–633 (1999).CrossRef
24.
go back to reference N. A. Galehdari and A. D. Kelkar, “Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites,” J. Mater. Res. 32, 426–434 (2017).CrossRef N. A. Galehdari and A. D. Kelkar, “Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites,” J. Mater. Res. 32, 426–434 (2017).CrossRef
25.
go back to reference T. Devanne et al., “Radiochemical ageing of an amine cured epoxy network. Part I: Change of physical properties,” Polymer 46, 229–236 (2005).CrossRef T. Devanne et al., “Radiochemical ageing of an amine cured epoxy network. Part I: Change of physical properties,” Polymer 46, 229–236 (2005).CrossRef
26.
go back to reference F. Djouani et al., “Degradation of epoxy coatings under gamma irradiation,” Rad. Phys. Chem. 82, 54–62 (2014).CrossRef F. Djouani et al., “Degradation of epoxy coatings under gamma irradiation,” Rad. Phys. Chem. 82, 54–62 (2014).CrossRef
27.
go back to reference D. Evans, “Swelling and gas evolution in irradiated organic matrix composites–a review,” AIP Conf. Proc. 1219, 103 (2010).CrossRef D. Evans, “Swelling and gas evolution in irradiated organic matrix composites–a review,” AIP Conf. Proc. 1219, 103 (2010).CrossRef
28.
go back to reference C. Wei et al., “Irradiation effects on a glycidylamine epoxy resin system for insulation in fusion reactor,” J. Nucl. Mater. 429, 113–117 (2012).CrossRef C. Wei et al., “Irradiation effects on a glycidylamine epoxy resin system for insulation in fusion reactor,” J. Nucl. Mater. 429, 113–117 (2012).CrossRef
29.
go back to reference S. G. Burnay, “Radiation-induced changes in the structure of an epoxy resin,” Radiat. Phys. Chem. 16, 389–397 (1980). S. G. Burnay, “Radiation-induced changes in the structure of an epoxy resin,” Radiat. Phys. Chem. 16, 389–397 (1980).
30.
go back to reference K. S. Seo et al., “Effects of ionizing radiation on epoxy, graphite fiber and epoxy/graphite fiber composites. Part II: Radical types and radical decay behavior,” J. Polym. Sci., Part B: Polym. Phys. 26, 533–544 (1988).CrossRef K. S. Seo et al., “Effects of ionizing radiation on epoxy, graphite fiber and epoxy/graphite fiber composites. Part II: Radical types and radical decay behavior,” J. Polym. Sci., Part B: Polym. Phys. 26, 533–544 (1988).CrossRef
31.
go back to reference M. Bilal and B. Vinod, “Study on effect of gamma radiation on tensile behavior of hemp and glass fiber reinforced epoxy polymer composite,” AIP Conf. Proc. 2274, 030022 (2020).CrossRef M. Bilal and B. Vinod, “Study on effect of gamma radiation on tensile behavior of hemp and glass fiber reinforced epoxy polymer composite,” AIP Conf. Proc. 2274, 030022 (2020).CrossRef
32.
go back to reference K. W. Wolf et al., “Effects of 0.5 MeV electrons on the interlaminar shear and flexural strength properties of graphite fiber composites,” J. Appl. Phys. 54, 5558–5561 (1983).CrossRef K. W. Wolf et al., “Effects of 0.5 MeV electrons on the interlaminar shear and flexural strength properties of graphite fiber composites,” J. Appl. Phys. 54, 5558–5561 (1983).CrossRef
33.
go back to reference A. A. Bryazgin et al., “Effect of high doses of ionizing radiation on the mechanical properties of composite materials,” in Proceedings of the 27th International Conference “Radiation Solid State Physics”, Sevastopol, 2017 (2017), pp. 32–40. A. A. Bryazgin et al., “Effect of high doses of ionizing radiation on the mechanical properties of composite materials,” in Proceedings of the 27th International Conference “Radiation Solid State Physics”, Sevastopol, 2017 (2017), pp. 32–40.
34.
go back to reference S. Alessi et al., “The influence of the processing temperature on gamma curing of epoxy resins for the production of advanced composites,” Rad. Phys. Chem. 76, 1347–1350 (2007).CrossRef S. Alessi et al., “The influence of the processing temperature on gamma curing of epoxy resins for the production of advanced composites,” Rad. Phys. Chem. 76, 1347–1350 (2007).CrossRef
35.
go back to reference J. Megusar, “Low temperature fast-neutron and gamma irradiation of glass fiber/epoxy composite. Part 2: Structure and Chemistry,” J. Nucl. Mater. 230, 233–241 (1996).CrossRef J. Megusar, “Low temperature fast-neutron and gamma irradiation of glass fiber/epoxy composite. Part 2: Structure and Chemistry,” J. Nucl. Mater. 230, 233–241 (1996).CrossRef
36.
go back to reference J. E. Shelby, “Effect of radiation on the physical properties of borosilicate glasses,” J. Appl. Phys. 51, 2561–2565 (1980).CrossRef J. E. Shelby, “Effect of radiation on the physical properties of borosilicate glasses,” J. Appl. Phys. 51, 2561–2565 (1980).CrossRef
37.
go back to reference W. A. Zdanievsky and T. E. Easler, “Bradte on the strength of a borosilicate glass,” J. Am. Ceram. Soc. 66, 311–313 (1983).CrossRef W. A. Zdanievsky and T. E. Easler, “Bradte on the strength of a borosilicate glass,” J. Am. Ceram. Soc. 66, 311–313 (1983).CrossRef
38.
go back to reference Q. Zu et al., “Glass resistance to radiation–Part I: preliminary investigation of three commercial glass fibers,” Int. J. Appl. Glass Sci. 11, 522–536 (2020).CrossRef Q. Zu et al., “Glass resistance to radiation–Part I: preliminary investigation of three commercial glass fibers,” Int. J. Appl. Glass Sci. 11, 522–536 (2020).CrossRef
39.
go back to reference C. H. Zhang et al., “Surface analysis of γ-ray irradiation modified PBO fiber,” Mater. Chem. Phys. 92, 245–250 (2005).CrossRef C. H. Zhang et al., “Surface analysis of γ-ray irradiation modified PBO fiber,” Mater. Chem. Phys. 92, 245–250 (2005).CrossRef
40.
go back to reference Y. Zhang et al., “Surface modification of aramid fibers with γ-ray radiation for improving interfacial bonding strength with epoxy resin,” J. Appl. Polym. Sci. 106, 2251–2262 (2007).CrossRef Y. Zhang et al., “Surface modification of aramid fibers with γ-ray radiation for improving interfacial bonding strength with epoxy resin,” J. Appl. Polym. Sci. 106, 2251–2262 (2007).CrossRef
41.
go back to reference Y. Zhang et al., “The modification of Kevlar fibers in coupling agents by γ-ray Co-irradiation,” Fibers Polym. 12, 1014–1020 (2011).CrossRef Y. Zhang et al., “The modification of Kevlar fibers in coupling agents by γ-ray Co-irradiation,” Fibers Polym. 12, 1014–1020 (2011).CrossRef
42.
go back to reference O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater. 20, 406–409 (1985).CrossRef O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater. 20, 406–409 (1985).CrossRef
43.
go back to reference O. V. Startsev and E. F. Nikishin, “Ageing of polymeric composite materials in outer space,” Mekh. Kompozit. Mater. 29, 457–467 (1993). O. V. Startsev and E. F. Nikishin, “Ageing of polymeric composite materials in outer space,” Mekh. Kompozit. Mater. 29, 457–467 (1993).
44.
go back to reference A. V. Slavin and O. V. Startsev, “Properties of aviation glass-reinforced plastics and carbon-reinforced plastics at an early stage of climatic impact,” Trudy VIAM, No. 9, 71–82 (2018). A. V. Slavin and O. V. Startsev, “Properties of aviation glass-reinforced plastics and carbon-reinforced plastics at an early stage of climatic impact,” Trudy VIAM, No. 9, 71–82 (2018).
45.
go back to reference O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in extremely cold climates,” Izv. Altai Gos. Univ., No. 1, 41–51 (2020). O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in extremely cold climates,” Izv. Altai Gos. Univ., No. 1, 41–51 (2020).
46.
go back to reference F. Markley, G. A. Forster, and R. Booth, “Radiation damage studies of zero gradient synchrotron magnet insulation and related materials,” IEEE Trans. Nucl. Sci. 16, 606–610 (1969).CrossRef F. Markley, G. A. Forster, and R. Booth, “Radiation damage studies of zero gradient synchrotron magnet insulation and related materials,” IEEE Trans. Nucl. Sci. 16, 606–610 (1969).CrossRef
47.
go back to reference G. Pluym and M. H. Van de Voorde, “Radiation damage tests on epoxy resins” (CERN-ISR-MAG-67-3, 1967). G. Pluym and M. H. Van de Voorde, “Radiation damage tests on epoxy resins” (CERN-ISR-MAG-67-3, 1967).
48.
go back to reference M. H. Van de Voorde and C. Restat, “Selection guide to organic materials for nuclear engineering,” CERN 72-7(European Organization for Nuclear Research, Geneva, 1972). M. H. Van de Voorde and C. Restat, “Selection guide to organic materials for nuclear engineering,” CERN 72-7(European Organization for Nuclear Research, Geneva, 1972).
49.
go back to reference H. Brechna, “Effect of nuclear radiation on organic materials; specifically magnet insulations in high-energy accelerators” (Stanford Univ., 1965). H. Brechna, “Effect of nuclear radiation on organic materials; specifically magnet insulations in high-energy accelerators” (Stanford Univ., 1965).
50.
go back to reference N. A. Munshi, “A Radiation-Resistant Epoxy Resin System for Toroidal Field and Other Superconducting Coil Fabrication,” in Advances in Cryogenic Engineering (Materials), Ed. by F. R. Fickett and R. P. Reed (Plenum Press, New York, 1992), Vol. 38, pp. 255–259. N. A. Munshi, “A Radiation-Resistant Epoxy Resin System for Toroidal Field and Other Superconducting Coil Fabrication,” in Advances in Cryogenic Engineering (Materials), Ed. by F. R. Fickett and R. P. Reed (Plenum Press, New York, 1992), Vol. 38, pp. 255–259.
51.
go back to reference T. J. Morgan and G. B. Stapleton, “Post irradiation mechanical properties of radiation resistant cast epoxy resin systems,” RL-75-136 (Rutherford Laboratory, Chilton, England, 1975). T. J. Morgan and G. B. Stapleton, “Post irradiation mechanical properties of radiation resistant cast epoxy resin systems,” RL-75-136 (Rutherford Laboratory, Chilton, England, 1975).
52.
go back to reference D. C. Phillips et al., “The selection and properties of epoxide resins used for the insulation of magnet systems in radiation environments,” CERN 81-05 (1981). D. C. Phillips et al., “The selection and properties of epoxide resins used for the insulation of magnet systems in radiation environments,” CERN 81-05 (1981).
53.
go back to reference D. Evans et al., “Post irradiation mechanical properties of epoxy resin glass composites.” RHEL/R 200 (Rutherford Laboratory, Chilton, England, 1970). D. Evans et al., “Post irradiation mechanical properties of epoxy resin glass composites.” RHEL/R 200 (Rutherford Laboratory, Chilton, England, 1970).
54.
go back to reference H. Schonbacher and A. Stolarz-Izycka, “Compilation of radiation damage test data–Part II: Thermosetting and thermoplastic resins,” CERN 79-08 (European Organization for Nuclear Research, Geneva, 1979). H. Schonbacher and A. Stolarz-Izycka, “Compilation of radiation damage test data–Part II: Thermosetting and thermoplastic resins,” CERN 79-08 (European Organization for Nuclear Research, Geneva, 1979).
55.
go back to reference G. Liptak, et al., “Radiation tests on selected electrical insulating materials for high-power and high voltage application,” CERN 85-02, 58 (1981). G. Liptak, et al., “Radiation tests on selected electrical insulating materials for high-power and high voltage application,” CERN 85-02, 58 (1981).
56.
go back to reference R. R. Coltman, Jr. and C. E. Klabunde, “The strength of G-10CR and G-11CR epoxies after irradiation at 5 K by gamma rays,” J. Nucl. Mater. 113, 268–272 (1983).CrossRef R. R. Coltman, Jr. and C. E. Klabunde, “The strength of G-10CR and G-11CR epoxies after irradiation at 5 K by gamma rays,” J. Nucl. Mater. 113, 268–272 (1983).CrossRef
57.
go back to reference T. W. Wilson, et al., “Effect of ionizing radiation on the dynamic mechanical properties of an epoxy and a graphite fiber/epoxy composite,” J. Polym. Sci., Part B: Polym. Phys. 26, 2029–2042 (1988).CrossRef T. W. Wilson, et al., “Effect of ionizing radiation on the dynamic mechanical properties of an epoxy and a graphite fiber/epoxy composite,” J. Polym. Sci., Part B: Polym. Phys. 26, 2029–2042 (1988).CrossRef
58.
go back to reference R. Li et al., “Gamma irradiation aging of glass fiber reinforced epoxy matrix composite,” in Proceedings of 20th International Conference on Composite Materials, Copenhagen, 2015. R. Li et al., “Gamma irradiation aging of glass fiber reinforced epoxy matrix composite,” in Proceedings of 20th International Conference on Composite Materials, Copenhagen, 2015.
59.
go back to reference J. M. Pintado and J. Miguel, “Effects of γ-radiation on mechanical behaviour of carbon/epoxy composite materials,” Cryogenics 38, 85–89 (1998).CrossRef J. M. Pintado and J. Miguel, “Effects of γ-radiation on mechanical behaviour of carbon/epoxy composite materials,” Cryogenics 38, 85–89 (1998).CrossRef
60.
go back to reference K. Rojdev et al., “Radiation effects on composites for long-duration lunar habitats,” J. Compos. Mater. 48, 861–878 (2014).CrossRef K. Rojdev et al., “Radiation effects on composites for long-duration lunar habitats,” J. Compos. Mater. 48, 861–878 (2014).CrossRef
61.
go back to reference D. R. Sekulić and M. M. Stevanović, “Effects of gamma irradiation and post-irradiation annealing on carbon/epoxy UDC properties deduced by methods of local loading,” J. Nucl. Mater. 412, 190–194 (2011).CrossRef D. R. Sekulić and M. M. Stevanović, “Effects of gamma irradiation and post-irradiation annealing on carbon/epoxy UDC properties deduced by methods of local loading,” J. Nucl. Mater. 412, 190–194 (2011).CrossRef
62.
go back to reference O. V. Startsev, A. S. Krotov, and P. D. Golub, “Effect of climatic and radiation ageing on properties of vps-7 glass fibre reinforced epoxy composite,” Polym. Degrad. Stab. 63, 353–358 (1999).CrossRef O. V. Startsev, A. S. Krotov, and P. D. Golub, “Effect of climatic and radiation ageing on properties of vps-7 glass fibre reinforced epoxy composite,” Polym. Degrad. Stab. 63, 353–358 (1999).CrossRef
63.
go back to reference Z. X. Wu et al., “Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite,” J. Nucl. Mater. 441, 67–72 (2013).CrossRef Z. X. Wu et al., “Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite,” J. Nucl. Mater. 441, 67–72 (2013).CrossRef
64.
go back to reference R. J. Zaldivar, H. I. Kim, and G. L. Ferrelli, “Effect of gamma radiation on the stability of UV replicated composite mirrors,” Opt. Eng. 57, 047102 (2018).CrossRef R. J. Zaldivar, H. I. Kim, and G. L. Ferrelli, “Effect of gamma radiation on the stability of UV replicated composite mirrors,” Opt. Eng. 57, 047102 (2018).CrossRef
65.
go back to reference D. R. Sekulić et al., “Gamma radiation effects on mechanical properties of carbon/epoxy composites,” Mater. Sci. Forum 518, 549–554 (2006).CrossRef D. R. Sekulić et al., “Gamma radiation effects on mechanical properties of carbon/epoxy composites,” Mater. Sci. Forum 518, 549–554 (2006).CrossRef
Metadata
Title
Radiation Aging of Polymer Composite Materials
Authors
M. P. Lebedev
O. V. Startsev
Publication date
01-06-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 2/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S199542122302017X

Other articles of this Issue 2/2023

Polymer Science, Series D 2/2023 Go to the issue

Premium Partners