Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2016

20-01-2016

Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications

Author: Cumali Sabah

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new fishnet-based waveguide metamaterial structure for the microwave region is introduced and investigated both numerically and experimentally. The proposed model is designed and fabricated on both sides of the substrate and exhibits strong metamaterial behavior (such as negative material parameters: i.e. negative permittivity, negative permeability, and negative index of refraction) at the resonance. Only one single slab is used in the simulation and experiment which provides a reduction in the number of the required samples with respect to its free-space and/or waveguide counterparts. This means that a small-sized metamaterial structure is simulated, measured, and characterized by placing the sample in the waveguide. The effective medium theory is employed for the characterization of the structure and the left-handed region is identified. The measured results are in good agreement with the simulated ones which show that the proposed structure operates well in terms of metamaterial behavior and can be used in waveguide miniaturization and waveguide-based applications such as antennas, filters, sensors, absorbers, imaging systems, and so on. To validate this claim, sensor and absorber applications are selected and the simulation results show that the proposed sensor and absorbers devices operate well under the defined conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, Boca Raton, 2009)CrossRef F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, Boca Raton, 2009)CrossRef
2.
3.
go back to reference S. Zhang, W. Fan, K.J. Malloy, S.R. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005)CrossRef S. Zhang, W. Fan, K.J. Malloy, S.R. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005)CrossRef
4.
go back to reference G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, A low-loss negative index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006)CrossRef G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, A low-loss negative index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006)CrossRef
5.
go back to reference U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt. Lett. 32, 1671–1673 (2007)CrossRef U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt. Lett. 32, 1671–1673 (2007)CrossRef
6.
go back to reference M. Kafesaki, I. Tsiapa, N. Katsarakis, Th Koschny, C.M. Soukoulis, E.N. Economou, Left-handed metamaterials: the fishnet structure and its variations. Phys. Rev. B 75, 235114 (2007)CrossRef M. Kafesaki, I. Tsiapa, N. Katsarakis, Th Koschny, C.M. Soukoulis, E.N. Economou, Left-handed metamaterials: the fishnet structure and its variations. Phys. Rev. B 75, 235114 (2007)CrossRef
7.
go back to reference D. Kwon, D.H. Werner, A.V. Kildishev, V.M. Shalaev, Near-infrared metamaterials with dual-band negative-index characteristics. Opt. Express 15, 1647–1652 (2007)CrossRef D. Kwon, D.H. Werner, A.V. Kildishev, V.M. Shalaev, Near-infrared metamaterials with dual-band negative-index characteristics. Opt. Express 15, 1647–1652 (2007)CrossRef
8.
go back to reference K.B. Alici, E. Ozbay, A planar metamaterial: Polarization independent fishnet structure. Photon Nanostruct Fundam Appl 6, 102–107 (2008)CrossRef K.B. Alici, E. Ozbay, A planar metamaterial: Polarization independent fishnet structure. Photon Nanostruct Fundam Appl 6, 102–107 (2008)CrossRef
9.
go back to reference C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt. Lett. 34, 1603–1605 (2009)CrossRef C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt. Lett. 34, 1603–1605 (2009)CrossRef
10.
go back to reference P. Ding, E.J. Liang, W.Q. Hu, L. Zhang, Q. Zhou, Q.Z. Xue, Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure. Photon Nanostruct Fundam Appl 7, 92–100 (2009)CrossRef P. Ding, E.J. Liang, W.Q. Hu, L. Zhang, Q. Zhou, Q.Z. Xue, Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure. Photon Nanostruct Fundam Appl 7, 92–100 (2009)CrossRef
11.
go back to reference C. Sabah, H.G. Roskos, Numerical and experimental investigation of fishnet-based metamaterial in a X-band waveguide. J. Phys. D Appl. Phys. 44, 255101 (2011)CrossRef C. Sabah, H.G. Roskos, Numerical and experimental investigation of fishnet-based metamaterial in a X-band waveguide. J. Phys. D Appl. Phys. 44, 255101 (2011)CrossRef
12.
go back to reference C. Sabah, H.G. Roskos, Dual-band polarization-independent sub-terahertz fishnet metamaterial. Curr. Appl. Phys. 12, 443–450 (2012)CrossRef C. Sabah, H.G. Roskos, Dual-band polarization-independent sub-terahertz fishnet metamaterial. Curr. Appl. Phys. 12, 443–450 (2012)CrossRef
13.
go back to reference C. Sabah, F. Urbani, Experimental analysis of Λ-shaped magnetic resonator for mu-negative metamaterials. Opt. Commun. 294, 409–413 (2013)CrossRef C. Sabah, F. Urbani, Experimental analysis of Λ-shaped magnetic resonator for mu-negative metamaterials. Opt. Commun. 294, 409–413 (2013)CrossRef
14.
go back to reference C. Sabah, Multiband metamaterials based on multiple concentric open-ring resonators topology. IEEE J Sel Topics Quantum Electron. 19, 8500808.1–8500808.8 (2013)CrossRef C. Sabah, Multiband metamaterials based on multiple concentric open-ring resonators topology. IEEE J Sel Topics Quantum Electron. 19, 8500808.1–8500808.8 (2013)CrossRef
15.
go back to reference C. Sabah, Microwave response of octagon-shaped parallel plates: low-loss metamaterial. Opt. Commun. 285, 4549–4552 (2012)CrossRef C. Sabah, Microwave response of octagon-shaped parallel plates: low-loss metamaterial. Opt. Commun. 285, 4549–4552 (2012)CrossRef
16.
go back to reference A.M. Nicolson, G. Ross, Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)CrossRef A.M. Nicolson, G. Ross, Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)CrossRef
17.
go back to reference W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)CrossRef W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)CrossRef
18.
go back to reference A. Yilmaz, C. Sabah, Diamond-shaped hole array in double-layer metal sheets for negative index of refraction. J. Electromagn. Waves Appl. 27, 413–420 (2013)CrossRef A. Yilmaz, C. Sabah, Diamond-shaped hole array in double-layer metal sheets for negative index of refraction. J. Electromagn. Waves Appl. 27, 413–420 (2013)CrossRef
19.
go back to reference C. Sabah, S. Uckun, Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters. Prog. Electromagn. Res. 91, 349–364 (2009)CrossRef C. Sabah, S. Uckun, Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters. Prog. Electromagn. Res. 91, 349–364 (2009)CrossRef
20.
go back to reference V.V. Varadan, R. Ro, Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality. IEEE Trans. Microw. Theory Tech. 55, 2224–2230 (2007)CrossRef V.V. Varadan, R. Ro, Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality. IEEE Trans. Microw. Theory Tech. 55, 2224–2230 (2007)CrossRef
21.
go back to reference T.M. Grzegorczyk, J.A. Kong, R. Lixin, Refraction experiments in waveguide environments, in Metamaterials: Physics and Engineering Explorations, ed. by N. Engheta, R.W. Ziolkowski (Wiley, Hoboken, 2006) T.M. Grzegorczyk, J.A. Kong, R. Lixin, Refraction experiments in waveguide environments, in Metamaterials: Physics and Engineering Explorations, ed. by N. Engheta, R.W. Ziolkowski (Wiley, Hoboken, 2006)
22.
go back to reference C. Sabah, Novel, dual band, single and double negative metamaterials: nonconcentric delta loop resonators. Prog. Electromagn. Res. B 25, 225–239 (2010)CrossRef C. Sabah, Novel, dual band, single and double negative metamaterials: nonconcentric delta loop resonators. Prog. Electromagn. Res. B 25, 225–239 (2010)CrossRef
23.
go back to reference K. Song, X. Zhao, H. Ma, B. Liu, Multi-band optical metamaterials based on random dendritic cells. J. Mater. Sci.: Mater. Electron. 24, 4888–4892 (2013) K. Song, X. Zhao, H. Ma, B. Liu, Multi-band optical metamaterials based on random dendritic cells. J. Mater. Sci.: Mater. Electron. 24, 4888–4892 (2013)
24.
go back to reference H. Zhou, C. Wang, H. Peng, A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure. J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-4056-2 H. Zhou, C. Wang, H. Peng, A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure. J. Mater. Sci.: Mater. Electron. (2015). doi:10.​1007/​s10854-015-4056-2
25.
go back to reference Z. Huang, J. Xue, Y. Hou, J. Chu, D.H. Zhang, Optical magnetic response from parallel plate metamaterials. Phys. Rev. B. 74, 193105.1–193105.4 (2006) Z. Huang, J. Xue, Y. Hou, J. Chu, D.H. Zhang, Optical magnetic response from parallel plate metamaterials. Phys. Rev. B. 74, 193105.1–193105.4 (2006)
26.
go back to reference C. Sabah, Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Appl. Phys. A Mater. Sci. Process. 108, 457–463 (2012)CrossRef C. Sabah, Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Appl. Phys. A Mater. Sci. Process. 108, 457–463 (2012)CrossRef
27.
go back to reference C. Sabah, H.G. Roskos, Broadside-coupled triangular split-ring-resonators for terahertz sensing. Eur. Phys. J. Appl. Phys. 61, 30402.1–30402.7 (2013)CrossRef C. Sabah, H.G. Roskos, Broadside-coupled triangular split-ring-resonators for terahertz sensing. Eur. Phys. J. Appl. Phys. 61, 30402.1–30402.7 (2013)CrossRef
28.
go back to reference C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 322, 137–142 (2014)CrossRef C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 322, 137–142 (2014)CrossRef
29.
go back to reference F. Dincer, M. Karaaslan, E. Unal, C. Sabah, Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration. Prog. Electromagn. Res. 141, 219–231 (2013)CrossRef F. Dincer, M. Karaaslan, E. Unal, C. Sabah, Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration. Prog. Electromagn. Res. 141, 219–231 (2013)CrossRef
30.
go back to reference F. Dincer, O. Akgol, M. Karaaslan, E. Unal, C. Sabah, Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog. Electromagn. Res. 144, 93–101 (2014)CrossRef F. Dincer, O. Akgol, M. Karaaslan, E. Unal, C. Sabah, Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog. Electromagn. Res. 144, 93–101 (2014)CrossRef
31.
go back to reference F. Dincer, M. Karaaslan, E. Unal, K. Delihacioglu, C. Sabah, Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Prog. Electromagn. Res. 144, 123–132 (2014)CrossRef F. Dincer, M. Karaaslan, E. Unal, K. Delihacioglu, C. Sabah, Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Prog. Electromagn. Res. 144, 123–132 (2014)CrossRef
32.
go back to reference F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, C. Sabah, Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips. J. Electromagn. Waves Appl. 28, 741–751 (2014)CrossRef F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, C. Sabah, Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips. J. Electromagn. Waves Appl. 28, 741–751 (2014)CrossRef
33.
go back to reference C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies. Radio Sci. 49, 306–314 (2014)CrossRef C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies. Radio Sci. 49, 306–314 (2014)CrossRef
34.
go back to reference E. Unal, F. Dincer, E. Tetik, M. Karaaslan, M. Bakir, C. Sabah, Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci.: Mater. Electron. 26, 9735–9740 (2015) E. Unal, F. Dincer, E. Tetik, M. Karaaslan, M. Bakir, C. Sabah, Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci.: Mater. Electron. 26, 9735–9740 (2015)
Metadata
Title
Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications
Author
Cumali Sabah
Publication date
20-01-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-4358-z

Other articles of this Issue 5/2016

Journal of Materials Science: Materials in Electronics 5/2016 Go to the issue