Skip to main content
Top
Published in: Journal of Materials Science 23/2020

14-05-2020 | Review

Recent advances in synthesis and application of organic near-infrared fluorescence polymers

Authors: Wentao Zou, Yaowei Zhu, Chuantao Gu, Yawei Miao, Song Wang, Bing Yu, Youqing Shen, Hailin Cong

Published in: Journal of Materials Science | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biofluorescence imaging enables real-time, visual detection of biomolecules, cells and tissues/organs on a three-dimensional scale. And it can track the various physiological processes of the organism and understand the relationship between biomolecules and their structure and function. Near-infrared imaging has a high temporal and spatial resolution, low damage to biological tissues and strong penetrating capability, good sensitivity and low background fluorescence interference, which are the advantages of imaging technology. However, at present, the deficiencies of fluorescent groups include relatively low fluorescence quantum yield and unfavorably short emission wavelength in the NIR region, especially in the second near-infrared window (1000–1700 nm, NIR-II). In the in vivo processes and applications of NIR fluorescence materials, biocompatibility, fluorescence quantum efficiency and adjustability of excitation and emission wavelengths in the NIR region should be considered. Therefore, organic polymeric materials are ideal for the construction of the NIR fluorescence probe. In this review, the synthesis and applications of NIR fluorescence polymers were summarized and the future trend has prospected as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lu C, Chen G, Yu B, Cong H (2018) Recent advances of low biological toxicity Ag2S QDs for biomedical application. Adv Eng Mater 20:1700940–1700951CrossRef Lu C, Chen G, Yu B, Cong H (2018) Recent advances of low biological toxicity Ag2S QDs for biomedical application. Adv Eng Mater 20:1700940–1700951CrossRef
2.
go back to reference Zhang H, Chen G, Yu B, Cong H (2018) Emerging advanced nanomaterials for cancer photothermal therapy. Rev Adv Mater Sci 53:131–146CrossRef Zhang H, Chen G, Yu B, Cong H (2018) Emerging advanced nanomaterials for cancer photothermal therapy. Rev Adv Mater Sci 53:131–146CrossRef
3.
go back to reference Yu B, Song N, Hu H, Chen G, Shen Y, Cong H (2018) A degradable triple temperature-, pH-, and redoxresponsive drug system for cancer chemotherapy. J Biomed Mater Res A 106:3203–3210CrossRef Yu B, Song N, Hu H, Chen G, Shen Y, Cong H (2018) A degradable triple temperature-, pH-, and redoxresponsive drug system for cancer chemotherapy. J Biomed Mater Res A 106:3203–3210CrossRef
4.
go back to reference Ye Y, Zhu L, Ma Y, Niu G, Chen X (2011) Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorgan Med Chem Lett 21:1146–1150CrossRef Ye Y, Zhu L, Ma Y, Niu G, Chen X (2011) Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorgan Med Chem Lett 21:1146–1150CrossRef
5.
go back to reference Kosaka N, Mitsunaga M, Longmire MR, Choyke PL, Kobayashi H (2011) Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer 129:1671–1677CrossRef Kosaka N, Mitsunaga M, Longmire MR, Choyke PL, Kobayashi H (2011) Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer 129:1671–1677CrossRef
7.
go back to reference Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753CrossRef Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753CrossRef
8.
go back to reference Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058CrossRef Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058CrossRef
9.
go back to reference Bates M, Huang B, Rust MJ, Dempsey GT, Wang W, Zhuang X (2009) Sub-diffraction-limit imaging with stochastic optical reconstruction microscopy. In: Springer series in chemical physics, pp 399–415 Bates M, Huang B, Rust MJ, Dempsey GT, Wang W, Zhuang X (2009) Sub-diffraction-limit imaging with stochastic optical reconstruction microscopy. In: Springer series in chemical physics, pp 399–415
10.
go back to reference Wu C, Hansen SJ, Hou Q et al (2011) Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew Chem Int Ed 50:3430–3434CrossRef Wu C, Hansen SJ, Hou Q et al (2011) Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew Chem Int Ed 50:3430–3434CrossRef
11.
go back to reference Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137:10420–10429CrossRef Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137:10420–10429CrossRef
13.
go back to reference Rogalski A (2011) Recent progress in infrared detector technologies. Infrared Phys Technol 54:136–154CrossRef Rogalski A (2011) Recent progress in infrared detector technologies. Infrared Phys Technol 54:136–154CrossRef
14.
go back to reference Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010–0031CrossRef Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010–0031CrossRef
15.
go back to reference Ding X, Liow CH, Zhang M et al (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136:15684–15693CrossRef Ding X, Liow CH, Zhang M et al (2014) Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc 136:15684–15693CrossRef
16.
go back to reference Antaris AL, Chen H, Cheng K et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242CrossRef Antaris AL, Chen H, Cheng K et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242CrossRef
17.
go back to reference Lyu Y, Pu K (2017) Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv Sci 4:1600481–1600494CrossRef Lyu Y, Pu K (2017) Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv Sci 4:1600481–1600494CrossRef
18.
go back to reference Jiang Y, Li J, Zhen X, Xie C, Pu K (2018) Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv Mater 30:1705980–1705988CrossRef Jiang Y, Li J, Zhen X, Xie C, Pu K (2018) Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv Mater 30:1705980–1705988CrossRef
19.
go back to reference Zhao DH, Yang J, Xia RX, Yao MH, Jin RM, Zhao YD, Liu B (2018) High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun 54:527–530CrossRef Zhao DH, Yang J, Xia RX, Yao MH, Jin RM, Zhao YD, Liu B (2018) High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun 54:527–530CrossRef
20.
go back to reference Metlin MT, Ambrozevich SA, Metlina DA, Vitukhnovsky AG, Taydakov IV (2017) Luminescence of pyrazolic 1,3-diketone Pr3+ complex with 1,10-phenanthroline. J Lumin 188:365–370CrossRef Metlin MT, Ambrozevich SA, Metlina DA, Vitukhnovsky AG, Taydakov IV (2017) Luminescence of pyrazolic 1,3-diketone Pr3+ complex with 1,10-phenanthroline. J Lumin 188:365–370CrossRef
21.
go back to reference Gu C, Du Z, Shen W (2014) Optical, electrochemical, and photovoltaic properties of conjugated polymers with dithiafulvalene as side chains. J Appl Polym Sci 132:41508–41513 Gu C, Du Z, Shen W (2014) Optical, electrochemical, and photovoltaic properties of conjugated polymers with dithiafulvalene as side chains. J Appl Polym Sci 132:41508–41513
22.
go back to reference Lyu Y, Zhen X, Miao Y, Pu K (2016) Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids. ACS Nano 11:358–367CrossRef Lyu Y, Zhen X, Miao Y, Pu K (2016) Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids. ACS Nano 11:358–367CrossRef
23.
go back to reference Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233–239CrossRef Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233–239CrossRef
24.
go back to reference Jiang Y, Upputuri PK, Xie C et al (2017) Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett 17:4964–4969CrossRef Jiang Y, Upputuri PK, Xie C et al (2017) Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett 17:4964–4969CrossRef
25.
go back to reference Zhen X, Feng X, Xie C, Zheng Y, Pu K (2017) Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biomaterials 127:97–106CrossRef Zhen X, Feng X, Xie C, Zheng Y, Pu K (2017) Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biomaterials 127:97–106CrossRef
26.
go back to reference Jiang Y, Pu K (2018) Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res 51:1840–1849CrossRef Jiang Y, Pu K (2018) Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res 51:1840–1849CrossRef
27.
go back to reference Li J, Pu K (2019) Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 48:38–71CrossRef Li J, Pu K (2019) Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 48:38–71CrossRef
28.
go back to reference Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235CrossRef Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235CrossRef
29.
go back to reference Zhu H, Fang Y, Zhen X et al (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7:5118–5125CrossRef Zhu H, Fang Y, Zhen X et al (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7:5118–5125CrossRef
30.
go back to reference Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731CrossRef Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731CrossRef
31.
go back to reference Zhou N, Dudnik AS, Li TING et al (2016) All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers. J Am Chem Soc 138:1240–1251CrossRef Zhou N, Dudnik AS, Li TING et al (2016) All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers. J Am Chem Soc 138:1240–1251CrossRef
32.
go back to reference Lee C, Kang H, Lee W, Kim T, Kim KH, Woo HY, Wang C, Kim BJ (2015) High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv Mater 27:2466–2471CrossRef Lee C, Kang H, Lee W, Kim T, Kim KH, Woo HY, Wang C, Kim BJ (2015) High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv Mater 27:2466–2471CrossRef
33.
go back to reference Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AK (2015) Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv Mater 27:3310–3317CrossRef Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AK (2015) Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv Mater 27:3310–3317CrossRef
34.
go back to reference Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J (2015) Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv Mater 27:6046–6054CrossRef Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J (2015) Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv Mater 27:6046–6054CrossRef
35.
go back to reference Cheng P, Ye L, Zhao X, Hou J, Li Y, Zhan X (2014) Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy Environ Sci 7:1351–1356CrossRef Cheng P, Ye L, Zhao X, Hou J, Li Y, Zhan X (2014) Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy Environ Sci 7:1351–1356CrossRef
36.
go back to reference Zhou Y, Kurosawa T, Ma W et al (2014) High performance all-polymer solar cell via polymer side-chain engineering. Adv Mater 26:3767–3772CrossRef Zhou Y, Kurosawa T, Ma W et al (2014) High performance all-polymer solar cell via polymer side-chain engineering. Adv Mater 26:3767–3772CrossRef
37.
go back to reference Mu C, Liu P, Ma W et al (2014) High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv Mater 26:7224–7230CrossRef Mu C, Liu P, Ma W et al (2014) High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv Mater 26:7224–7230CrossRef
38.
go back to reference Mori D, Benten H, Okada I, Ohkita H, Ito S (2014) Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ Sci 7:2939–2943CrossRef Mori D, Benten H, Okada I, Ohkita H, Ito S (2014) Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ Sci 7:2939–2943CrossRef
39.
go back to reference Schubert M, Collins BA, Mangold H et al (2014) Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells. Adv Funct Mater 24:4068–4081CrossRef Schubert M, Collins BA, Mangold H et al (2014) Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells. Adv Funct Mater 24:4068–4081CrossRef
40.
go back to reference Pu K, Mei J, Jokerst JV (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27:5184–5190CrossRef Pu K, Mei J, Jokerst JV (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27:5184–5190CrossRef
41.
go back to reference Wu C, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52:3086–3109CrossRef Wu C, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52:3086–3109CrossRef
42.
go back to reference Zhu C, Liu L, Yang Q, Lv F, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112:4687–4735CrossRef Zhu C, Liu L, Yang Q, Lv F, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112:4687–4735CrossRef
43.
go back to reference Howes P, Green M, Levitt J, Suhling K, Hughes M (2010) Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. J Am Chem Soc 132:3989–3996CrossRef Howes P, Green M, Levitt J, Suhling K, Hughes M (2010) Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. J Am Chem Soc 132:3989–3996CrossRef
44.
go back to reference Jiang Y, Pu K (2017) Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles. Small 13:1700710–1700728CrossRef Jiang Y, Pu K (2017) Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles. Small 13:1700710–1700728CrossRef
45.
go back to reference Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279CrossRef Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279CrossRef
46.
go back to reference Pu KY, Liu B (2013) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423CrossRef Pu KY, Liu B (2013) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423CrossRef
47.
go back to reference Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42:6620–6633CrossRef Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42:6620–6633CrossRef
48.
go back to reference Wu PJ, Kuo SY, Huang YC, Chen CP, Chan YH (2014) Polydiacetylene-enclosed near-infrared fluorescent semiconducting polymer dots for bioimaging and sensing. Anal Chem 86:4831–4839CrossRef Wu PJ, Kuo SY, Huang YC, Chen CP, Chan YH (2014) Polydiacetylene-enclosed near-infrared fluorescent semiconducting polymer dots for bioimaging and sensing. Anal Chem 86:4831–4839CrossRef
49.
go back to reference Sun K, Chen H, Wang L et al (2014) Size-dependent property and cell labeling of semiconducting polymer dots. ACS Appl Mater Interfaces 6:10802–10812CrossRef Sun K, Chen H, Wang L et al (2014) Size-dependent property and cell labeling of semiconducting polymer dots. ACS Appl Mater Interfaces 6:10802–10812CrossRef
50.
go back to reference Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D (2012) A convenient preparation of multi-spectral microparticles by bacteria-mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. Adv Mater 24:637–641CrossRef Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D (2012) A convenient preparation of multi-spectral microparticles by bacteria-mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. Adv Mater 24:637–641CrossRef
51.
go back to reference Pu K, Shuhendler AJ, Valta MP, Cui L, Saar M, Peehl DM, Rao J (2014) Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthcare Mater 3:1292–1298CrossRef Pu K, Shuhendler AJ, Valta MP, Cui L, Saar M, Peehl DM, Rao J (2014) Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthcare Mater 3:1292–1298CrossRef
52.
go back to reference Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392 Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392
53.
go back to reference Zhang XD, Wang H, Antaris AL et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater 28:6872–6879CrossRef Zhang XD, Wang H, Antaris AL et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater 28:6872–6879CrossRef
54.
go back to reference Hong G, Zou Y, Antaris AL et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206–4214CrossRef Hong G, Zou Y, Antaris AL et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206–4214CrossRef
55.
go back to reference Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1848CrossRef Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1848CrossRef
56.
go back to reference Yuan J, Ouyang J, Cimrová V, Leclerc M, Najari A, Zou Y (2017) Development of quinoxaline based polymers for photovoltaic applications. J Mater Chem C 5:1858–1879CrossRef Yuan J, Ouyang J, Cimrová V, Leclerc M, Najari A, Zou Y (2017) Development of quinoxaline based polymers for photovoltaic applications. J Mater Chem C 5:1858–1879CrossRef
57.
go back to reference Ke CS, Fang CC, Yan JY et al (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano 11:3166–3177CrossRef Ke CS, Fang CC, Yan JY et al (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano 11:3166–3177CrossRef
58.
go back to reference Aoki H, Kakuta JI, Yamaguchi T, Nitahara S, Ito S (2011) Near-infrared fluorescent nanoparticle of low-bandgap π-conjugated polymer for in vivo molecular imaging. Polym J 43:937–940CrossRef Aoki H, Kakuta JI, Yamaguchi T, Nitahara S, Ito S (2011) Near-infrared fluorescent nanoparticle of low-bandgap π-conjugated polymer for in vivo molecular imaging. Polym J 43:937–940CrossRef
59.
go back to reference Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K (2017) Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 145:168–177CrossRef Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K (2017) Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 145:168–177CrossRef
60.
go back to reference Tang Y, Li Y, Lu X et al (2019) Bio-erasable intermolecular donor–acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv Funct Mater 29:1807376–1807384CrossRef Tang Y, Li Y, Lu X et al (2019) Bio-erasable intermolecular donor–acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv Funct Mater 29:1807376–1807384CrossRef
61.
go back to reference Jiang Y, Upputuri PK, Xie C et al (2019) Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv Mater 31:1808166–1808174CrossRef Jiang Y, Upputuri PK, Xie C et al (2019) Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv Mater 31:1808166–1808174CrossRef
62.
go back to reference Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H (2018) Recent progress in fluorescence imaging of the near-infrared II window. ChemBioChem 19:2522–2541CrossRef Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H (2018) Recent progress in fluorescence imaging of the near-infrared II window. ChemBioChem 19:2522–2541CrossRef
63.
go back to reference Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang ZY (2008) Band gap tunable, donor–acceptor–donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater 20:6208–6216CrossRef Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang ZY (2008) Band gap tunable, donor–acceptor–donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater 20:6208–6216CrossRef
64.
go back to reference Yang D, Wang H, Sun C et al (2017) Development of a high quantum yield dye for tumour imaging. Chem Sci 8:6322–6326CrossRef Yang D, Wang H, Sun C et al (2017) Development of a high quantum yield dye for tumour imaging. Chem Sci 8:6322–6326CrossRef
65.
go back to reference Yang Q, Ma Z, Wang H et al (2017) Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater 29:1605497–1605505CrossRef Yang Q, Ma Z, Wang H et al (2017) Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater 29:1605497–1605505CrossRef
66.
go back to reference Singha S, Kim D, Roy B et al (2015) A structural remedy toward bright dipolar fluorophores in aqueous media. Chem Sci 6:4335–4342CrossRef Singha S, Kim D, Roy B et al (2015) A structural remedy toward bright dipolar fluorophores in aqueous media. Chem Sci 6:4335–4342CrossRef
67.
go back to reference Kono T, Kumaki D, Nishida J, Tokito S, Yamashita Y (2010) Dithienylbenzobis(thiadiazole) based organic semiconductors with low LUMO levels and narrow energy gaps. Chem Commun 46:3265–3267CrossRef Kono T, Kumaki D, Nishida J, Tokito S, Yamashita Y (2010) Dithienylbenzobis(thiadiazole) based organic semiconductors with low LUMO levels and narrow energy gaps. Chem Commun 46:3265–3267CrossRef
68.
go back to reference Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2011) Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. J Mater Chem 21:4679–4688CrossRef Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2011) Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. J Mater Chem 21:4679–4688CrossRef
69.
go back to reference Wang Y, Kadoya T, Wang L, Hayakawa T, Tokita M, Mori T, Michinobu T (2015) Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport. J Mater Chem C 3:1196–1207CrossRef Wang Y, Kadoya T, Wang L, Hayakawa T, Tokita M, Mori T, Michinobu T (2015) Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport. J Mater Chem C 3:1196–1207CrossRef
70.
go back to reference Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRef Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRef
71.
go back to reference Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris AL, Zhang B, Zou Y, Dai H (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed Engl 52:13002–13006CrossRef Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris AL, Zhang B, Zou Y, Dai H (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed Engl 52:13002–13006CrossRef
72.
go back to reference Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336CrossRef Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336CrossRef
73.
go back to reference Kang H, Gravier J, Bao K et al (2016) Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv Mater 28:8162–8168CrossRef Kang H, Gravier J, Bao K et al (2016) Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv Mater 28:8162–8168CrossRef
74.
go back to reference Yang Q, Hu Z, Zhu S (2018) Donor Engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc 140:1715–1724CrossRef Yang Q, Hu Z, Zhu S (2018) Donor Engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc 140:1715–1724CrossRef
75.
go back to reference Tian R, Ma H, Yang Q et al (2019) Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci 10:326–332CrossRef Tian R, Ma H, Yang Q et al (2019) Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci 10:326–332CrossRef
76.
go back to reference Colson JW, Woll AR, Mukherjee A et al (2011) Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228–231CrossRef Colson JW, Woll AR, Mukherjee A et al (2011) Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228–231CrossRef
77.
go back to reference Lin CY, Zhang D, Zhao Z, Xia Z (2017) Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater 30:1703646–1703661CrossRef Lin CY, Zhang D, Zhao Z, Xia Z (2017) Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater 30:1703646–1703661CrossRef
78.
go back to reference Ding SY, Wang W et al (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568CrossRef Ding SY, Wang W et al (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568CrossRef
79.
go back to reference Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135:5328–5331CrossRef Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135:5328–5331CrossRef
80.
go back to reference Fang Q, Wang J, Gu S et al (2015) 3D Porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137:8352–8355CrossRef Fang Q, Wang J, Gu S et al (2015) 3D Porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 137:8352–8355CrossRef
81.
go back to reference Zhou TY, Xu SQ, Wen Q, Pang ZF, Zhao X (2014) One-step construction of two different kinds of pores in a 2D covalent organic framework. J Am Chem Soc 136:15885–15888CrossRef Zhou TY, Xu SQ, Wen Q, Pang ZF, Zhao X (2014) One-step construction of two different kinds of pores in a 2D covalent organic framework. J Am Chem Soc 136:15885–15888CrossRef
82.
go back to reference Wang X, Ye N (2017) Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38:3059–3078CrossRef Wang X, Ye N (2017) Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38:3059–3078CrossRef
83.
go back to reference Beuerle F, Gole B (2018) Covalent organic frameworks and cage compounds: design and applications of polymeric and discrete organic scaffolds. Angew Chem Int Ed 57:4850–4878CrossRef Beuerle F, Gole B (2018) Covalent organic frameworks and cage compounds: design and applications of polymeric and discrete organic scaffolds. Angew Chem Int Ed 57:4850–4878CrossRef
84.
go back to reference Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238CrossRef Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238CrossRef
85.
go back to reference Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133:19816–19822CrossRef Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133:19816–19822CrossRef
86.
go back to reference Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV (2018) H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett 3:400–409CrossRef Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV (2018) H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett 3:400–409CrossRef
87.
go back to reference Rogge SMJ, Bavykina A, Hajek J et al (2017) Metal–organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184CrossRef Rogge SMJ, Bavykina A, Hajek J et al (2017) Metal–organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184CrossRef
88.
go back to reference Sun D, Jang S, Yim SJ, Ye L, Kim DP (2018) Metal doped core-shell metal-organic frameworks@ covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater 28:1707110–1707116CrossRef Sun D, Jang S, Yim SJ, Ye L, Kim DP (2018) Metal doped core-shell metal-organic frameworks@ covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater 28:1707110–1707116CrossRef
89.
go back to reference Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2:672–677CrossRef Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2:672–677CrossRef
90.
go back to reference Spitler EL, Colson JW, Uribe-Romo FJ, Woll AR, Giovino MR, Saldivar A, Dichtel WR (2012) Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew Chem Int Ed 51:2623–2627CrossRef Spitler EL, Colson JW, Uribe-Romo FJ, Woll AR, Giovino MR, Saldivar A, Dichtel WR (2012) Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew Chem Int Ed 51:2623–2627CrossRef
91.
go back to reference Mandal AK, Mahmood J, Baek JB (2017) Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat 3:373–391CrossRef Mandal AK, Mahmood J, Baek JB (2017) Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat 3:373–391CrossRef
92.
go back to reference Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W (2018) 2D Organic materials for optoelectronic applications. Adv Mater 30:1702415–1702441CrossRef Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W (2018) 2D Organic materials for optoelectronic applications. Adv Mater 30:1702415–1702441CrossRef
93.
go back to reference Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T (2013) A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew Chem Int Ed 52:2920–2924CrossRef Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T (2013) A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew Chem Int Ed 52:2920–2924CrossRef
94.
go back to reference Zhang J, Xu L, Wong WY (2018) Energy materials based on metal Schiff base complexes. Coordin Chem Rev 355:180–198CrossRef Zhang J, Xu L, Wong WY (2018) Energy materials based on metal Schiff base complexes. Coordin Chem Rev 355:180–198CrossRef
95.
go back to reference Tegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793CrossRef Tegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793CrossRef
96.
go back to reference Lin S, Diercks CS, Zhang YB et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208–1213CrossRef Lin S, Diercks CS, Zhang YB et al (2015) Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208–1213CrossRef
97.
go back to reference Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508–8516CrossRef Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508–8516CrossRef
98.
go back to reference Yang LM, Ganz E, Wang S, Li XJ, Frauenheim T (2015) Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. J Mater Chem C 3:2244–2254CrossRef Yang LM, Ganz E, Wang S, Li XJ, Frauenheim T (2015) Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. J Mater Chem C 3:2244–2254CrossRef
99.
go back to reference Feng X, Chen L, Honsho Y (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24:3026–3031CrossRef Feng X, Chen L, Honsho Y (2012) An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater 24:3026–3031CrossRef
100.
go back to reference Wan S, Guo J, Kim J, Ihee H, Jiang D (2009) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew Chem Int Ed 48:5439–5442CrossRef Wan S, Guo J, Kim J, Ihee H, Jiang D (2009) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew Chem Int Ed 48:5439–5442CrossRef
101.
go back to reference Jiang JX, Trewin A, Adams DJ, Cooper AI (2011) Band gap engineering in fluorescent conjugated microporous polymers. Chem Sci 2:1777–1781CrossRef Jiang JX, Trewin A, Adams DJ, Cooper AI (2011) Band gap engineering in fluorescent conjugated microporous polymers. Chem Sci 2:1777–1781CrossRef
102.
go back to reference Guo L, Cao D (2015) Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. J Mater Chem C 3:8490–8494CrossRef Guo L, Cao D (2015) Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. J Mater Chem C 3:8490–8494CrossRef
103.
go back to reference Wang M, Guo L, Cao D (2018) Covalent organic polymers for rapid fluorescence imaging of latent fingerprints. ACS Appl Mater Interfaces 10:21619–21627CrossRef Wang M, Guo L, Cao D (2018) Covalent organic polymers for rapid fluorescence imaging of latent fingerprints. ACS Appl Mater Interfaces 10:21619–21627CrossRef
104.
go back to reference Dalapati S, Jin E, Addicoat M, Heine T, Jiang D (2016) Highly emissive covalent organic frameworks. J Am Chem Soc 138:5797–5800CrossRef Dalapati S, Jin E, Addicoat M, Heine T, Jiang D (2016) Highly emissive covalent organic frameworks. J Am Chem Soc 138:5797–5800CrossRef
105.
go back to reference Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP (2018) Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 47:514–532CrossRef Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP (2018) Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 47:514–532CrossRef
106.
go back to reference Yu T, Liu X, Bolcato-Bellemin AL (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed 51:8478–8484CrossRef Yu T, Liu X, Bolcato-Bellemin AL (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed 51:8478–8484CrossRef
107.
go back to reference Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic polyglycerols for biomedical applications. Adv Mater 22:190–218CrossRef Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic polyglycerols for biomedical applications. Adv Mater 22:190–218CrossRef
108.
go back to reference Heek T, Wurthner F, Haag R (2013) Synthesis and optical properties of water-soluble polyglycerol-dendronized rylene bisimide dyes. Chem Eur J 19:10911–10921CrossRef Heek T, Wurthner F, Haag R (2013) Synthesis and optical properties of water-soluble polyglycerol-dendronized rylene bisimide dyes. Chem Eur J 19:10911–10921CrossRef
109.
go back to reference Lyu Y, Cui D, Sun H, Miao Y, Duan H, Pu K (2017) Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew Chem Int Ed 56:9155–9159CrossRef Lyu Y, Cui D, Sun H, Miao Y, Duan H, Pu K (2017) Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew Chem Int Ed 56:9155–9159CrossRef
110.
go back to reference Cui D, Xie C, Li J, Lyu Y, Pu K (2018) Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv Healthcare Mater 7:1800329–1800335CrossRef Cui D, Xie C, Li J, Lyu Y, Pu K (2018) Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv Healthcare Mater 7:1800329–1800335CrossRef
111.
go back to reference Xie C, Zhen X, Miao Q, Lyu Y, Pu K (2018) Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv Mater 30:1801331–1801339CrossRef Xie C, Zhen X, Miao Q, Lyu Y, Pu K (2018) Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv Mater 30:1801331–1801339CrossRef
112.
go back to reference Abdukayum A, Chen JT, Zhao Q, Yan XP (2013) Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135:14125–14133CrossRef Abdukayum A, Chen JT, Zhao Q, Yan XP (2013) Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135:14125–14133CrossRef
113.
go back to reference Liu F, Yan W, Chuang YJ, Zhen Z, Xie J, Pan Z (2013) Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci Rep 3:1554–1562CrossRef Liu F, Yan W, Chuang YJ, Zhen Z, Xie J, Pan Z (2013) Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci Rep 3:1554–1562CrossRef
114.
go back to reference Shi J, Sun X, Li J, Man H, Shen J, Yu Y, Zhang H (2015) Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37:260–270CrossRef Shi J, Sun X, Li J, Man H, Shen J, Yu Y, Zhang H (2015) Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37:260–270CrossRef
115.
go back to reference Kamimura S, Xu CN, Yamada H, Marriott G, Hyodo K, Ohno T (2017) Near-infrared luminescence from double-perovskite Sr3Sn2O7:Nd3+: a new class of probe for in vivo imaging in the second optical window of biological tissue. J Ceram Soc Jpn 125:591–595CrossRef Kamimura S, Xu CN, Yamada H, Marriott G, Hyodo K, Ohno T (2017) Near-infrared luminescence from double-perovskite Sr3Sn2O7:Nd3+: a new class of probe for in vivo imaging in the second optical window of biological tissue. J Ceram Soc Jpn 125:591–595CrossRef
116.
go back to reference Wu Y, Li Y, Qin X, Chen R, Wu D, Liu S, Qiu J (2015) Near-infrared long-persistent phosphor of Zn3Ga2Ge2O10: Cr3+ sintered in different atmosphere. Spectrochim Acta Part A Mol Biomol Spectrosc 151:385–389CrossRef Wu Y, Li Y, Qin X, Chen R, Wu D, Liu S, Qiu J (2015) Near-infrared long-persistent phosphor of Zn3Ga2Ge2O10: Cr3+ sintered in different atmosphere. Spectrochim Acta Part A Mol Biomol Spectrosc 151:385–389CrossRef
117.
go back to reference Du J, De COQ, Korthout K, Poelman D (2017) LaAlO3:Mn4+ as near-infrared emitting persistent luminescence phosphor for medical imaging: a charge compensation study. Materials 10:1422–1435CrossRef Du J, De COQ, Korthout K, Poelman D (2017) LaAlO3:Mn4+ as near-infrared emitting persistent luminescence phosphor for medical imaging: a charge compensation study. Materials 10:1422–1435CrossRef
118.
go back to reference Wang Q, Zhang S, Li Z, Zhu Q (2018) Near infrared-emitting Cr3+/Eu3+ Co-doped zinc gallogermanate persistence luminescent nanoparticles for cell imaging. Nanoscale Res Lett 13:1–9CrossRef Wang Q, Zhang S, Li Z, Zhu Q (2018) Near infrared-emitting Cr3+/Eu3+ Co-doped zinc gallogermanate persistence luminescent nanoparticles for cell imaging. Nanoscale Res Lett 13:1–9CrossRef
119.
go back to reference Masne Le, de Chermont Q, Chaneac C, Seguin J et al (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci 104:9266–9271CrossRef Masne Le, de Chermont Q, Chaneac C, Seguin J et al (2007) Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci 104:9266–9271CrossRef
120.
go back to reference Maldiney T, Viana B, Bessière A, Gourier D, Bessodes M, Scherman D, Richard C (2013) In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt Mater 35:1852–1858CrossRef Maldiney T, Viana B, Bessière A, Gourier D, Bessodes M, Scherman D, Richard C (2013) In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt Mater 35:1852–1858CrossRef
121.
go back to reference Miao Q, Xie C, Zhen X et al (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110CrossRef Miao Q, Xie C, Zhen X et al (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110CrossRef
122.
go back to reference Jiang Y, Huang J, Zhen X et al (2019) A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun 10:1–10CrossRef Jiang Y, Huang J, Zhen X et al (2019) A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun 10:1–10CrossRef
Metadata
Title
Recent advances in synthesis and application of organic near-infrared fluorescence polymers
Authors
Wentao Zou
Yaowei Zhu
Chuantao Gu
Yawei Miao
Song Wang
Bing Yu
Youqing Shen
Hailin Cong
Publication date
14-05-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 23/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04800-6

Other articles of this Issue 23/2020

Journal of Materials Science 23/2020 Go to the issue

Premium Partners