Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2020

13-06-2020

Reciprocating Sliding Wear of Cu, Cu-SiC Functionally Graded Coating on Electrical Contact

Authors: Swastika Banthia, Mohammad Amid, Srijan Sengupta, Siddhartha Das, Karabi Das

Published in: Journal of Materials Engineering and Performance | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present work evaluates the coefficient of friction (CoF), electrical resistivity, and electrical contact resistance (ECR) of the electrodeposited single-layered Cu-SiC nanocomposite coating and five-layered Cu, Cu-SiC functionally graded coating (FGC). Both the coatings have a similar thickness (60 µm) and same composition at the top surface (7 vol.% reinforced SiC nanoparticles), while the FGC has a gradient of composition and microstructure throughout the thickness. The Cu, Cu-SiC FGC has two layers of Cu-SiC with a decrement in the content of SiC nanoparticles from 7 to 2 vol.% followed by three Cu layers with an increasing crystallite size towards the substrate. The electrical resistivity of the Cu, Cu-SiC FGC is measured by the four-wire resistance measurement method and the value is observed to be 50% less than the conventional nanocomposite coating. A linear reciprocating sliding wear test is carried out at 2, 5 and 8 N load at a constant frequency and stroke length of 10 Hz and 2 mm, respectively. The monitored value of CoF is significantly less for the Cu, Cu-SiC FGC than the single-layered coating at 2 and 5 N loads and is nearly equal at 8 N load. It is observed that before wear, the ECR values of both the coatings are higher than the uncoated Cu and after wear the ECR value of Cu, Cu-SiC FGC is the lowest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P.G. Slade, Electrical Contacts: Principles and Applications, second, CRC Press, Taylor & Francisgroup, 2013 P.G. Slade, Electrical Contacts: Principles and Applications, second, CRC Press, Taylor & Francisgroup, 2013
2.
go back to reference S. Hannel, S. Fouvry, P. Kapsa, and L. Vincent, The Fretting Sliding Transition as a Criterion for Electrical Contact Performance, Wear, 2001, 249, p 761–770CrossRef S. Hannel, S. Fouvry, P. Kapsa, and L. Vincent, The Fretting Sliding Transition as a Criterion for Electrical Contact Performance, Wear, 2001, 249, p 761–770CrossRef
3.
go back to reference P. Jedrzejczyk, S. Fouvry, and P. Chalandon, A Fast Methodology to Quantify Electrical-Contact Behaviour Under Fretting Loading Conditions, Wear, 2009, 267, p 1731–1740CrossRef P. Jedrzejczyk, S. Fouvry, and P. Chalandon, A Fast Methodology to Quantify Electrical-Contact Behaviour Under Fretting Loading Conditions, Wear, 2009, 267, p 1731–1740CrossRef
4.
go back to reference Anon, Materials evaluation under fretting conditions, ASTM International, 1982, STP780–EB ed. WestConshohocken, PA Anon, Materials evaluation under fretting conditions, ASTM International, 1982, STP780–EB ed. WestConshohocken, PA
5.
go back to reference S. Fouvry and P. Kapsa, Surface damage under reciprocating sliding, Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, B. Bhushan, Ed., Springer, Dordrecht, 2001, p 377–391CrossRef S. Fouvry and P. Kapsa, Surface damage under reciprocating sliding, Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, B. Bhushan, Ed., Springer, Dordrecht, 2001, p 377–391CrossRef
6.
go back to reference G.X. Chen and Z.R. Zhou, Study on Transition Between Fretting and Reciprocating Sliding Wear, Wear, 2001, 250–251, p 665–672CrossRef G.X. Chen and Z.R. Zhou, Study on Transition Between Fretting and Reciprocating Sliding Wear, Wear, 2001, 250–251, p 665–672CrossRef
7.
go back to reference Y. Tamai, Low Friction of Metals in Reciprocating Sliding, J. Appl. Phys., 1874, 1959(32), p 1437–1440 Y. Tamai, Low Friction of Metals in Reciprocating Sliding, J. Appl. Phys., 1874, 1959(32), p 1437–1440
8.
go back to reference D. Chapman, H.W. Turner, C. Turner, Copper in Electrical Contacts, Copp Dev Assoc 2015, 223 D. Chapman, H.W. Turner, C. Turner, Copper in Electrical Contacts, Copp Dev Assoc 2015, 223
9.
go back to reference S. Timsit, Electrical Contact Resistance: Properties of Stationary Interfaces. in Electrical Contacts Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No. 98CB36238), 1998, Arlington, VA, USA, p 1-19 S. Timsit, Electrical Contact Resistance: Properties of Stationary Interfaces. in Electrical Contacts Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No. 98CB36238), 1998, Arlington, VA, USA, p 1-19
10.
go back to reference B. Andre, Nanocomposites for use in sliding electrical contacts, Acta Universitatis Upsaliensis Uppsala, Sweden, 2011 B. Andre, Nanocomposites for use in sliding electrical contacts, Acta Universitatis Upsaliensis Uppsala, Sweden, 2011
11.
go back to reference Y. Zhan and G. Zhang, The Effect of Interfacial Modifying on the Mechanical and Wear Properties of SiCp/Cu Composites, Mater. Lett., 2003, 57, p 4583–4591CrossRef Y. Zhan and G. Zhang, The Effect of Interfacial Modifying on the Mechanical and Wear Properties of SiCp/Cu Composites, Mater. Lett., 2003, 57, p 4583–4591CrossRef
12.
go back to reference H. Singh, L. Kumar, S.N. Alam, Development of Cu reinforced sic particulate composites, IOP Conf Ser Mater Sci Eng, 2015, 75 H. Singh, L. Kumar, S.N. Alam, Development of Cu reinforced sic particulate composites, IOP Conf Ser Mater Sci Eng, 2015, 75
13.
go back to reference R.N. Ahmed, C.S. Ramesh, Tribological properties of cast copper-SiC-Graphite hybrid composites, in International Symposium Research Materials Science Engineering India, 2004, p 20–22 R.N. Ahmed, C.S. Ramesh, Tribological properties of cast copper-SiC-Graphite hybrid composites, in International Symposium Research Materials Science Engineering India, 2004, p 20–22
14.
go back to reference G.F.C. Efe, M. Ipek, S. Zeytin, and C. Bindal, Fabrication and Properties of sic Reinforced Copper-Matrix-Composite Contact Material, Mater. Technol., 2016, 50, p 585–590 G.F.C. Efe, M. Ipek, S. Zeytin, and C. Bindal, Fabrication and Properties of sic Reinforced Copper-Matrix-Composite Contact Material, Mater. Technol., 2016, 50, p 585–590
15.
go back to reference R. Zhang, L. Gao, Y. Pan, L. Chen, and J. Guo, Preparation of Cu/SiC FGM by Coating Method and SPS Sintering, Mater. Sci. Forum, 2003, 423–425, p 249–252CrossRef R. Zhang, L. Gao, Y. Pan, L. Chen, and J. Guo, Preparation of Cu/SiC FGM by Coating Method and SPS Sintering, Mater. Sci. Forum, 2003, 423–425, p 249–252CrossRef
16.
go back to reference S.G. Shiri, P. Abachi, K. Pourazarang, and M.M. Rahvard, Preparation of In Situ Cu/NbC Nanocomposite and its Functionally Graded Behavior for Electrical Contact Applications, Trans. Nonferrous Met. Soc. China, 2015, 25, p 863–872CrossRef S.G. Shiri, P. Abachi, K. Pourazarang, and M.M. Rahvard, Preparation of In Situ Cu/NbC Nanocomposite and its Functionally Graded Behavior for Electrical Contact Applications, Trans. Nonferrous Met. Soc. China, 2015, 25, p 863–872CrossRef
17.
go back to reference A. Raheem and K.A. Ali, Preparation and Mechanical Characterization of Cu-Al2O3 Functionally Graded Material for Electrical Contact Applications, J. Univ. Babylon, 2017, 25, p 1339–1351 A. Raheem and K.A. Ali, Preparation and Mechanical Characterization of Cu-Al2O3 Functionally Graded Material for Electrical Contact Applications, J. Univ. Babylon, 2017, 25, p 1339–1351
18.
go back to reference A.K. Pradhan and S. Das, Pulse Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effects of Surfactants and Deposition Parameters, Metall. Mater. Trans. A, 2014, 45, p 5708–5720CrossRef A.K. Pradhan and S. Das, Pulse Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effects of Surfactants and Deposition Parameters, Metall. Mater. Trans. A, 2014, 45, p 5708–5720CrossRef
19.
go back to reference A.K. Pradhan and S. Das, Pulse-Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effect of Concentration of SiC in the Electrolyte, J. Alloys Compd., 2014, 590, p 294–302CrossRef A.K. Pradhan and S. Das, Pulse-Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effect of Concentration of SiC in the Electrolyte, J. Alloys Compd., 2014, 590, p 294–302CrossRef
20.
go back to reference S. Das, S. Banthia, A. Patra, S. Sengupta, and S.B. Singh, Novel Bilayer Zn-Ni/Ni-Co-SiC Nanocomposite Coating with Exceptional Corrosion and Wear Properties by Pulse Electrodeposition, J. Alloys Compd., 2018, 738, p 394–404CrossRef S. Das, S. Banthia, A. Patra, S. Sengupta, and S.B. Singh, Novel Bilayer Zn-Ni/Ni-Co-SiC Nanocomposite Coating with Exceptional Corrosion and Wear Properties by Pulse Electrodeposition, J. Alloys Compd., 2018, 738, p 394–404CrossRef
21.
go back to reference A. Mitra, M. Mallik, S. Sengupta, S. Banthia, S. Das, and K. Das, Effect of Anodic Passivation at High Applied Potential Difference on the Crystal Shape and Morphology of Copper Electrodeposits: Thermodynamics and Kinetics of Electrocrystallization, Cryst. Growth Des., 2017, 17(4), p 1539–1549CrossRef A. Mitra, M. Mallik, S. Sengupta, S. Banthia, S. Das, and K. Das, Effect of Anodic Passivation at High Applied Potential Difference on the Crystal Shape and Morphology of Copper Electrodeposits: Thermodynamics and Kinetics of Electrocrystallization, Cryst. Growth Des., 2017, 17(4), p 1539–1549CrossRef
22.
go back to reference S. Banthia, S. Sengupta, M. Mallik, S. Das, and K. Das, Substrate Effect on Electrodeposited Copper Morphology and Crystal Shapes, Surf. Eng., 2018, 34, p 482–495CrossRef S. Banthia, S. Sengupta, M. Mallik, S. Das, and K. Das, Substrate Effect on Electrodeposited Copper Morphology and Crystal Shapes, Surf. Eng., 2018, 34, p 482–495CrossRef
23.
go back to reference A.K. Pradhan and S. Das, Dry Sliding Wear and Friction Behavior of Cu-SiC Nanocomposite Coating Prepared by Pulse Reverse Electrodeposition, Tribol. Trans., 2013, 57, p 46–56CrossRef A.K. Pradhan and S. Das, Dry Sliding Wear and Friction Behavior of Cu-SiC Nanocomposite Coating Prepared by Pulse Reverse Electrodeposition, Tribol. Trans., 2013, 57, p 46–56CrossRef
24.
go back to reference L.P.P. Chokkakula, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p 4049 L.P.P. Chokkakula, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p 4049
25.
go back to reference U. Wiklund, J. Gunnars, and S. Hogmark, Influence of Residual Stresses on Fracture and Delamination of Thin Hard Coatings, Wear, 1999, 232, p 262–269CrossRef U. Wiklund, J. Gunnars, and S. Hogmark, Influence of Residual Stresses on Fracture and Delamination of Thin Hard Coatings, Wear, 1999, 232, p 262–269CrossRef
26.
go back to reference S. Suresh, Graded Materials for Resistance to Contact Deformation and Damage, Science, 2001, 80(292), p 2447–2451CrossRef S. Suresh, Graded Materials for Resistance to Contact Deformation and Damage, Science, 2001, 80(292), p 2447–2451CrossRef
27.
go back to reference S. Banthia, S. Sengupta, S. Das, and K. Das, Cu, Cu-SiC Functionally Graded Coating for Protection Against Corrosion and Wear, Surf. Coat. Technol., 2019, 374, p 833–844CrossRef S. Banthia, S. Sengupta, S. Das, and K. Das, Cu, Cu-SiC Functionally Graded Coating for Protection Against Corrosion and Wear, Surf. Coat. Technol., 2019, 374, p 833–844CrossRef
28.
go back to reference S. Banthia, S. Sengupta, S. Das, and K. Das, Synthesis and Characterization of Novel Cu, Cu-SiC Functionally Graded Coating by Pulse Reverse Electrodeposition, Appl. Surf. Sci., 2019, 467–468, p 567–579CrossRef S. Banthia, S. Sengupta, S. Das, and K. Das, Synthesis and Characterization of Novel Cu, Cu-SiC Functionally Graded Coating by Pulse Reverse Electrodeposition, Appl. Surf. Sci., 2019, 467–468, p 567–579CrossRef
29.
go back to reference V. Torabinejad, M. Aliofkhazraei, A.S. Rouhaghdam, and M.H. Allahyarzadeh, Functionally Graded Coating of Ni-Fe Fabricated by Pulse Electrodeposition, J. Mater. Eng. Perform., 2016, 25, p 5494–5501CrossRef V. Torabinejad, M. Aliofkhazraei, A.S. Rouhaghdam, and M.H. Allahyarzadeh, Functionally Graded Coating of Ni-Fe Fabricated by Pulse Electrodeposition, J. Mater. Eng. Perform., 2016, 25, p 5494–5501CrossRef
30.
go back to reference M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Sabour Rouhaghdam, and V. Torabinejad, Gradient Electrodeposition of Ni-Cu-W(alumina) Nanocomposite Coating, Mater. Des., 2016, 107, p 74–81CrossRef M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Sabour Rouhaghdam, and V. Torabinejad, Gradient Electrodeposition of Ni-Cu-W(alumina) Nanocomposite Coating, Mater. Des., 2016, 107, p 74–81CrossRef
31.
go back to reference V. Torabinejad, A.S. Rouhaghdam, M. Aliofkhazraei, and M.H. Allahyarzadeh, Ni-Fe-Al2O3 Electrodeposited Nanocomposite Coating with Functionally Graded Microstructure, Bull. Mater. Sci., 2016, 39, p 857–864CrossRef V. Torabinejad, A.S. Rouhaghdam, M. Aliofkhazraei, and M.H. Allahyarzadeh, Ni-Fe-Al2O3 Electrodeposited Nanocomposite Coating with Functionally Graded Microstructure, Bull. Mater. Sci., 2016, 39, p 857–864CrossRef
32.
go back to reference M.H. Allahyarzadeh and M. Aliofkhazraei, Functionally graded nickel–tungsten coating: electrodeposition, corrosion and wear behaviour, Can. Metall. Q., 2016, 55, p 303–311.CrossRef M.H. Allahyarzadeh and M. Aliofkhazraei, Functionally graded nickel–tungsten coating: electrodeposition, corrosion and wear behaviour, Can. Metall. Q., 2016, 55, p 303–311.CrossRef
33.
go back to reference G133-05, Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM Int, 2016, i, p 1–9 G133-05, Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM Int, 2016, i, p 1–9
34.
go back to reference Standard Test Methods for Measuring Resistance of Electrical Connections Static, 2003, 02, p 1–6 Standard Test Methods for Measuring Resistance of Electrical Connections Static, 2003, 02, p 1–6
35.
go back to reference K. Kim, J. Lee, Reciprocal sliding friction model for an electro-deposited coating and its parameter estimation using Markov Chain Monte Carlo method, Materials (Basel), 2016, 9 K. Kim, J. Lee, Reciprocal sliding friction model for an electro-deposited coating and its parameter estimation using Markov Chain Monte Carlo method, Materials (Basel), 2016, 9
36.
go back to reference C.H. Hager, S. Sharma, and J.H. Sanders, Characterization of Mixed and Gross Slip Fretting Wear Regimes in Ti6Al4V Interfaces at Room Temperature, Wear, 2004, 257, p 167–180CrossRef C.H. Hager, S. Sharma, and J.H. Sanders, Characterization of Mixed and Gross Slip Fretting Wear Regimes in Ti6Al4V Interfaces at Room Temperature, Wear, 2004, 257, p 167–180CrossRef
37.
go back to reference K. Gotlib-Vainshtein, O. Girshevitz, C.N. Sukenik, D. Barlam, and S.R. Cohen, A Nanometric Cushion for Enhancing Scratch and Wear Resistance of Hard Films, Beilstein J. Nanotechnol., 2014, 5, p 1005–1015CrossRef K. Gotlib-Vainshtein, O. Girshevitz, C.N. Sukenik, D. Barlam, and S.R. Cohen, A Nanometric Cushion for Enhancing Scratch and Wear Resistance of Hard Films, Beilstein J. Nanotechnol., 2014, 5, p 1005–1015CrossRef
38.
go back to reference X. Liu, Z. Cai, J. He, J. Peng, and M. Zhu, Effect of Elevated Temperature on Fretting Wear Under Electric Contact, Wear, 2017, 376–377, p 643–665CrossRef X. Liu, Z. Cai, J. He, J. Peng, and M. Zhu, Effect of Elevated Temperature on Fretting Wear Under Electric Contact, Wear, 2017, 376–377, p 643–665CrossRef
Metadata
Title
Reciprocating Sliding Wear of Cu, Cu-SiC Functionally Graded Coating on Electrical Contact
Authors
Swastika Banthia
Mohammad Amid
Srijan Sengupta
Siddhartha Das
Karabi Das
Publication date
13-06-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04878-8

Other articles of this Issue 6/2020

Journal of Materials Engineering and Performance 6/2020 Go to the issue

Premium Partners