Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2020

15-06-2020

Prediction of Forming of AA 5052-H32 Sheets under Impact Loading and Experimental Validation

Authors: Saibal Kanchan Barik, R. Ganesh Narayanan, Niranjan Sahoo

Published in: Journal of Materials Engineering and Performance | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study aims to elaborate the influence of bending prestrain, pressure, and sheet thickness on the forming behavior of AA 5052-H32 sheets deformed at a high velocity using a shock tube. The forming parameters, including the dome height, strain evolution, effective strain, and stress distribution, are evaluated through shock tube experiments and finite element simulations in DEFORM-3D; the numerical and experimental results are compared for validation. The rate-dependent material properties from both the prestrained sheets and the shock-deformed sheets are incorporated into the simulations. The forming process is modeled in a single step without considering prestrain application. Instead, the mechanical properties obtained from the actual prestrained sheets are provided as input to the numerical models before forming. The sharp increase in strain evolution matches quite well with the experimental results obtained by the strain rosette. This agreement confirms the strain rate of the sheet during the forming process. Circular grids are printed on the sheets, and Hill’s yield criterion is used to calculate the effective strain. Moreover, Hollomon’s power law is used to calculate the effective stress in the same location. The simulated effective stress and strain distribution matches quite well with the experimental results with a slight overprediction. The distribution of the stress and strain confirms the uniform stretching of the material without strain localization. The variation in the forming parameters indicates that the forming behavior is dependent on the degree of prestrain, and the forming parameters increase monotonically with the increase in pressure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I.N. Fridlyander, V.G. Sister, O.E. Grushko, V.V. Berstenev, L.M. Sheveleva, and L.A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Met. Sci. Heat Treat., 2002, 44(9), p 365–370CrossRef I.N. Fridlyander, V.G. Sister, O.E. Grushko, V.V. Berstenev, L.M. Sheveleva, and L.A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Met. Sci. Heat Treat., 2002, 44(9), p 365–370CrossRef
2.
go back to reference E. Hsu, J.E. Carsley, and R. Verma, Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures, J. Mater. Eng. Perform., 2008, 17(3), p 288–296CrossRef E. Hsu, J.E. Carsley, and R. Verma, Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures, J. Mater. Eng. Perform., 2008, 17(3), p 288–296CrossRef
3.
go back to reference W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280(1), p 37–49CrossRef W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280(1), p 37–49CrossRef
4.
go back to reference D. Li and A.K. Ghosh, Effects of Temperature and Blank Holding Force on Biaxial Forming Behavior of Aluminum Sheet Alloys, J. Mater. Eng. Perform., 2004, 13(3), p 348–360CrossRef D. Li and A.K. Ghosh, Effects of Temperature and Blank Holding Force on Biaxial Forming Behavior of Aluminum Sheet Alloys, J. Mater. Eng. Perform., 2004, 13(3), p 348–360CrossRef
5.
go back to reference S. Golovashchenko and A. Krause, Improvement of Formability of 6xxx Aluminum Alloys Using Incremental Forming Technology, J. Mater. Eng. Perform., 2005, 14(4), p 503–507CrossRef S. Golovashchenko and A. Krause, Improvement of Formability of 6xxx Aluminum Alloys Using Incremental Forming Technology, J. Mater. Eng. Perform., 2005, 14(4), p 503–507CrossRef
6.
go back to reference R. Gu, Q. Liu, S. Chen, W. Wang, and X. Wei, Study on High-Temperature Mechanical Properties and Forming Limit Diagram of 7075 Aluminum Alloy Sheet in Hot Stamping, J. Mater. Eng. Perform., 2019, 28(12), p 7259–7272CrossRef R. Gu, Q. Liu, S. Chen, W. Wang, and X. Wei, Study on High-Temperature Mechanical Properties and Forming Limit Diagram of 7075 Aluminum Alloy Sheet in Hot Stamping, J. Mater. Eng. Perform., 2019, 28(12), p 7259–7272CrossRef
7.
go back to reference V. Grolleau, G. Gary, and D. Mohr, Biaxial Testing of Sheet Materials at High Strain Rates Using Viscoelastic Bars, Exp. Mech., 2008, 48(3), p 293–306CrossRef V. Grolleau, G. Gary, and D. Mohr, Biaxial Testing of Sheet Materials at High Strain Rates Using Viscoelastic Bars, Exp. Mech., 2008, 48(3), p 293–306CrossRef
8.
go back to reference M. Ahmed, D.R. Kumar, and M. Nabi, Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process, J. Mater. Eng. Perform., 2017, 26(1), p 439–452CrossRef M. Ahmed, D.R. Kumar, and M. Nabi, Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process, J. Mater. Eng. Perform., 2017, 26(1), p 439–452CrossRef
9.
go back to reference S.F. Golovashchenko, Material Formability and Coil Design in Electromagnetic Forming, J. Mater. Eng. Perform., 2007, 16(3), p 314–320CrossRef S.F. Golovashchenko, Material Formability and Coil Design in Electromagnetic Forming, J. Mater. Eng. Perform., 2007, 16(3), p 314–320CrossRef
10.
go back to reference Y. Luo, C. Miller, G. Luckey, P. Friedman, and Y. Peng, On Practical Forming Limits in Superplastic Forming of Aluminum Sheet, J. Mater. Eng. Perform., 2007, 16(3), p 274–283CrossRef Y. Luo, C. Miller, G. Luckey, P. Friedman, and Y. Peng, On Practical Forming Limits in Superplastic Forming of Aluminum Sheet, J. Mater. Eng. Perform., 2007, 16(3), p 274–283CrossRef
11.
go back to reference R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng., 2006, 32(4), p 541–560 R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng., 2006, 32(4), p 541–560
12.
go back to reference S. Mahabunphachai and M. Koç, Investigations on Forming of Aluminum 5052 and 6061 Sheet Alloys at Warm Temperatures, Mater. Des., 2010, 31(5), p 2422–2434CrossRef S. Mahabunphachai and M. Koç, Investigations on Forming of Aluminum 5052 and 6061 Sheet Alloys at Warm Temperatures, Mater. Des., 2010, 31(5), p 2422–2434CrossRef
13.
go back to reference P. Broomhead and R.J. Grieve, The Effect of Strain Rate on the Strain to Fracture of a Sheet Steel under Biaxial Tensile Stress Conditions, Trans. ASME J. Engng Mater. Technol., 1982, 104(1), p 102–106CrossRef P. Broomhead and R.J. Grieve, The Effect of Strain Rate on the Strain to Fracture of a Sheet Steel under Biaxial Tensile Stress Conditions, Trans. ASME J. Engng Mater. Technol., 1982, 104(1), p 102–106CrossRef
14.
go back to reference V.S. Balanethiram and G.S. Daehn, Enhanced Formability of Interstitial Free Iron at High Strain Rates, Scr. Metall. Mater., 1992, 27(12), p 1783–1788CrossRef V.S. Balanethiram and G.S. Daehn, Enhanced Formability of Interstitial Free Iron at High Strain Rates, Scr. Metall. Mater., 1992, 27(12), p 1783–1788CrossRef
15.
go back to reference A.S. Kumar, K.U. Gokul, P.V.K. Rao, and A. Jagannadham, Blast Loading of Underwater Targets—A Study through Explosion Bulge Test Experiments, Int. J. Impact Eng., Elsevier, 2015, 76(3), p 189–195 A.S. Kumar, K.U. Gokul, P.V.K. Rao, and A. Jagannadham, Blast Loading of Underwater Targets—A Study through Explosion Bulge Test Experiments, Int. J. Impact Eng., Elsevier, 2015, 76(3), p 189–195
16.
go back to reference V. Jenkouk, S. Patil, and B. Markert, Joining of Tubes by Gas Detonation Forming, Journal of Physics: Conference Series, 2016, p 32101 V. Jenkouk, S. Patil, and B. Markert, Joining of Tubes by Gas Detonation Forming, Journal of Physics: Conference Series, 2016, p 32101
17.
go back to reference S.P. Patil, M. Popli, V. Jenkouk, and B. Markert, Numerical Modelling of the Gas Detonation Process of Sheet Metal Forming, Journal of Physics: Conference Series, 2016, p 32099 S.P. Patil, M. Popli, V. Jenkouk, and B. Markert, Numerical Modelling of the Gas Detonation Process of Sheet Metal Forming, Journal of Physics: Conference Series, 2016, p 32099
18.
go back to reference D.A. Oliveira, M.J. Worswick, M. Finn, and D. Newman, Electromagnetic Forming of Aluminum Alloy Sheet: Free-Form and Cavity Fill Experiments and Model, J. Mater. Process. Technol., 2005, 170(2), p 350–362CrossRef D.A. Oliveira, M.J. Worswick, M. Finn, and D. Newman, Electromagnetic Forming of Aluminum Alloy Sheet: Free-Form and Cavity Fill Experiments and Model, J. Mater. Process. Technol., 2005, 170(2), p 350–362CrossRef
19.
go back to reference J. Liu, Z. Wang, and Q. Meng, Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal, J. Mater. Eng. Perform., 2012, 21(4), p 429–436CrossRef J. Liu, Z. Wang, and Q. Meng, Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal, J. Mater. Eng. Perform., 2012, 21(4), p 429–436CrossRef
20.
go back to reference S.P. Patil, K.G. Prajapati, V. Jenkouk, H. Olivier, and B. Markert, Experimental and Numerical Studies of Sheet Metal Forming with Damage Using Gas Detonation Process, Materials, 2017, 7(12), p 556 S.P. Patil, K.G. Prajapati, V. Jenkouk, H. Olivier, and B. Markert, Experimental and Numerical Studies of Sheet Metal Forming with Damage Using Gas Detonation Process, Materials, 2017, 7(12), p 556
21.
go back to reference M. Stoffel, R. Schmidt, and D. Weichert, Shock Wave-Loaded Plates, Int. J. Solids Struct., 2001, 38(43), p 7659–7680CrossRef M. Stoffel, R. Schmidt, and D. Weichert, Shock Wave-Loaded Plates, Int. J. Solids Struct., 2001, 38(43), p 7659–7680CrossRef
22.
go back to reference P. Kumar, J. LeBlanc, D.S. Stargel, and A. Shukla, Effect of Plate Curvature on Blast Response of Aluminum Panels, Int. J. Impact Eng., 2012, 46, p 74–85CrossRef P. Kumar, J. LeBlanc, D.S. Stargel, and A. Shukla, Effect of Plate Curvature on Blast Response of Aluminum Panels, Int. J. Impact Eng., 2012, 46, p 74–85CrossRef
23.
go back to reference B. Justusson, M. Pankow, C. Heinrich, M. Rudolph, and A.M. Waas, Use of a Shock Tube to Determine the Bi-Axial Yield of an Aluminum Alloy under High Rates, Int. J. Impact Eng., 2013, 58, p 55–65CrossRef B. Justusson, M. Pankow, C. Heinrich, M. Rudolph, and A.M. Waas, Use of a Shock Tube to Determine the Bi-Axial Yield of an Aluminum Alloy under High Rates, Int. J. Impact Eng., 2013, 58, p 55–65CrossRef
24.
go back to reference N. Ray, G. Jagadeesh, and S. Suwas, Response of Shock Wave Deformation in AA5086 Aluminum Alloy, Mater. Sci. Eng. A, 2015, 622, p 219–227CrossRef N. Ray, G. Jagadeesh, and S. Suwas, Response of Shock Wave Deformation in AA5086 Aluminum Alloy, Mater. Sci. Eng. A, 2015, 622, p 219–227CrossRef
25.
go back to reference A. Bisht, L. Kumar, J. Subburaj, G. Jagadeesh, and S. Suwas, Effect of Stacking Fault Energy on the Evolution of Microstructure and Texture during Blast Assisted Deformation of FCC Materials, J. Mater. Process. Technol., 2019, 271, p 568–583CrossRef A. Bisht, L. Kumar, J. Subburaj, G. Jagadeesh, and S. Suwas, Effect of Stacking Fault Energy on the Evolution of Microstructure and Texture during Blast Assisted Deformation of FCC Materials, J. Mater. Process. Technol., 2019, 271, p 568–583CrossRef
26.
go back to reference S.P. Patil, R. Murkute, N. Shirafkan, and B. Markert, Deformation of Stacked Metallic Sheets by Shock Wave Loading, Materials, 2018, 8(9), p 679 S.P. Patil, R. Murkute, N. Shirafkan, and B. Markert, Deformation of Stacked Metallic Sheets by Shock Wave Loading, Materials, 2018, 8(9), p 679
27.
go back to reference S.P. Patil, Y. Fenard, S. Bailkeri, K.A. Heufer, and B. Markert, Investigation of Sheet Metal Forming Using a Rapid Compression Machine, Materials, 2019, 12(23), p 3957 S.P. Patil, Y. Fenard, S. Bailkeri, K.A. Heufer, and B. Markert, Investigation of Sheet Metal Forming Using a Rapid Compression Machine, Materials, 2019, 12(23), p 3957
28.
go back to reference M.A. Louar, B. Belkassem, H. Ousji, K. Spranghers, D. Kakogiannis, L. Pyl, and J. Vantomme, Explosive Driven Shock Tube Loading of Aluminium Plates: Experimental Study, Int. J. Impact Eng., 2015, 86, p 111–123CrossRef M.A. Louar, B. Belkassem, H. Ousji, K. Spranghers, D. Kakogiannis, L. Pyl, and J. Vantomme, Explosive Driven Shock Tube Loading of Aluminium Plates: Experimental Study, Int. J. Impact Eng., 2015, 86, p 111–123CrossRef
29.
go back to reference Z. Wang, L. Jing, J. Ning, and L. Zhao, The Structural Response of Clamped Sandwich Beams Subjected to Impact Loading, Compos. Struct., 2011, 93(4), p 1300–1308CrossRef Z. Wang, L. Jing, J. Ning, and L. Zhao, The Structural Response of Clamped Sandwich Beams Subjected to Impact Loading, Compos. Struct., 2011, 93(4), p 1300–1308CrossRef
30.
go back to reference C. Li, D. Liu, H. Yu, and Z. Ji, Research on Formability of 5052 Aluminum Alloy Sheet in a Quasi-Static–Dynamic Tensile Process, Int. J. Mach. Tools Manuf., 2009, 49(2), p 117–124CrossRef C. Li, D. Liu, H. Yu, and Z. Ji, Research on Formability of 5052 Aluminum Alloy Sheet in a Quasi-Static–Dynamic Tensile Process, Int. J. Mach. Tools Manuf., 2009, 49(2), p 117–124CrossRef
31.
go back to reference D. Liu, H. Yu, and C. Li, Experimental Observations of Quasi-Static-Dynamic Formability in Biaxially Strained AA5052-O, J. Mater. Eng. Perform., 2011, 20(2), p 223–230CrossRef D. Liu, H. Yu, and C. Li, Experimental Observations of Quasi-Static-Dynamic Formability in Biaxially Strained AA5052-O, J. Mater. Eng. Perform., 2011, 20(2), p 223–230CrossRef
32.
go back to reference G. Li, J.T. Jinn, W.T. Wu, and S.I. Oh, Recent Development and Applications of Three-Dimensional Finite Element Modeling in Bulk Forming Processes, J. Mater. Process. Technol., 2001, 113(3), p 40–45CrossRef G. Li, J.T. Jinn, W.T. Wu, and S.I. Oh, Recent Development and Applications of Three-Dimensional Finite Element Modeling in Bulk Forming Processes, J. Mater. Process. Technol., 2001, 113(3), p 40–45CrossRef
33.
go back to reference R. Jain, S.K. Pal, and S.B. Singh, Numerical Modeling Methodologies for Friction Stir Welding Process, Comput Meth.Proc. Eng., 2017, p 125–169 R. Jain, S.K. Pal, and S.B. Singh, Numerical Modeling Methodologies for Friction Stir Welding Process, Comput Meth.Proc. Eng., 2017, p 125–169
34.
go back to reference K. Gök and M. Aydin, Investigations of Friction Stir Welding Process Using Finite Element Method, Int. J. Adv. Manuf. Technol., 2013, 68(4), p 775–780CrossRef K. Gök and M. Aydin, Investigations of Friction Stir Welding Process Using Finite Element Method, Int. J. Adv. Manuf. Technol., 2013, 68(4), p 775–780CrossRef
35.
go back to reference R. Jain, S.K. Pal, and S.B. Singh, Thermomechanical Simulation of Friction Stir Welding Process Using Lagrangian Method, Simulations for Design and Manufacturing, 2018, p 103–146 R. Jain, S.K. Pal, and S.B. Singh, Thermomechanical Simulation of Friction Stir Welding Process Using Lagrangian Method, Simulations for Design and Manufacturing, 2018, p 103–146
36.
go back to reference J. Fluhrer, DEFORM 3D Version 6.1 User’s Manual, Sci. Form. Technol. Corp. Ohio, 2007 J. Fluhrer, DEFORM 3D Version 6.1 User’s Manual, Sci. Form. Technol. Corp. Ohio, 2007
37.
go back to reference D.M. Neto, M.C. Oliveira, J.L. Alves, and L.F. Menezes, Influence of the Plastic Anisotropy Modelling in the Reverse Deep Drawing Process Simulation, Mater. Des., 2014, 60, p 368–379CrossRef D.M. Neto, M.C. Oliveira, J.L. Alves, and L.F. Menezes, Influence of the Plastic Anisotropy Modelling in the Reverse Deep Drawing Process Simulation, Mater. Des., 2014, 60, p 368–379CrossRef
38.
go back to reference R.H. Wagoner and J.L. Chenot, Fundamentals of Metal Forming, Wiley, London, 1996 R.H. Wagoner and J.L. Chenot, Fundamentals of Metal Forming, Wiley, London, 1996
39.
go back to reference D.H. Liu, C.-F. Li, and H.-P. Yu, Numerical Modeling and Deformation Analysis for Electromagnetically Assisted Deep Drawing of AA5052 Sheet, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1294–1302CrossRef D.H. Liu, C.-F. Li, and H.-P. Yu, Numerical Modeling and Deformation Analysis for Electromagnetically Assisted Deep Drawing of AA5052 Sheet, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1294–1302CrossRef
40.
go back to reference X. Cui, J. Mo, J. Li, X. Xiao, B. Zhou, and J. Fang, Large-Scale Sheet Deformation Process by Electromagnetic Incremental Forming Combined with Stretch Forming, J. Mater. Process. Technol., 2016, 237, p 139–154CrossRef X. Cui, J. Mo, J. Li, X. Xiao, B. Zhou, and J. Fang, Large-Scale Sheet Deformation Process by Electromagnetic Incremental Forming Combined with Stretch Forming, J. Mater. Process. Technol., 2016, 237, p 139–154CrossRef
41.
go back to reference N. Nanda, S. R., Kulkarni, V., & Sahoo, Apt Strain Measurement Technique for Impulsive Loading Applications, Meas. Sci. Technol., 2017, 28(3), p 037001 N. Nanda, S. R., Kulkarni, V., & Sahoo, Apt Strain Measurement Technique for Impulsive Loading Applications, Meas. Sci. Technol., 2017, 28(3), p 037001
42.
go back to reference National Instruments, Strain Gauge Measurement – A Tutorial, Appl. Note, 1998, 078, p 1–12 National Instruments, Strain Gauge Measurement – A Tutorial, Appl. Note, 1998, 078, p 1–12
Metadata
Title
Prediction of Forming of AA 5052-H32 Sheets under Impact Loading and Experimental Validation
Authors
Saibal Kanchan Barik
R. Ganesh Narayanan
Niranjan Sahoo
Publication date
15-06-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04884-w

Other articles of this Issue 6/2020

Journal of Materials Engineering and Performance 6/2020 Go to the issue

Premium Partners