Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2017

30.11.2016

Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process

verfasst von: Meraj Ahmed, D. Ravi Kumar, M. Nabi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Formability of lightweight materials like Al and Mg alloys is a major concern for their application in automobiles. Forming limit diagram (FLD) and strain distribution are extremely useful in the assessment of overall formability of sheet metals. At very high strain rates, the deformation behavior of Al alloys and the safe forming window could be different from quasi-static conventional forming. In this paper, formability of Al 5052 alloy sheets of 0.5 mm thickness has been assessed in electrohydraulic forming (EHF) in terms of FLD and strain distribution and compared with formability in conventional forming by punch-stretching experiments. EHF is a high strain rate forming process which utilizes energy released from a capacitor bank to generate shockwaves in a fluid medium. Experiments have been conducted at different energy levels to identify the highest safe strains in different modes of deformation. From the experimental results, it has been observed that the limit strains increased by nearly 45-50% in all the three regions of the FLD (tension-tension, plane strain and tension compression). Unlike in the case of conventional forming, no clear necking due to strain localization has been observed prior to failure due to very high strain rates of the order of 103/s. The strain distribution has been found to be more uniform in the case of EHF with a single strain peak at the pole. Absence of friction in EHF also leads to higher degree of biaxiality leading to higher limit strains in biaxial tension. In the case of EHF, the effective strain and hardness are maximum at the pole and their variation correlated well with the findings from the strain distribution analysis. In all modes of deformation, the features of fractured surface in EHF appeared different from a normal ductile failure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.J. Joost, Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering, JOM-J. Miner. Met. Mater. Soc. (TMS), 2012, 64(9), p 1032–1038 W.J. Joost, Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering, JOM-J. Miner. Met. Mater. Soc. (TMS), 2012, 64(9), p 1032–1038
2.
Zurück zum Zitat W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280, p 37–49CrossRef W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280, p 37–49CrossRef
3.
Zurück zum Zitat J. Hirsch, Aluminum in Innovative Light-Weight Car Design, Mater. Trans., 2011, 52(5), p 818–824CrossRef J. Hirsch, Aluminum in Innovative Light-Weight Car Design, Mater. Trans., 2011, 52(5), p 818–824CrossRef
4.
Zurück zum Zitat E. Iriondo, B. Gonzalez, M. Gutierrez, V. Vonhout, G. Daehn, B. Hayes, Electromagnetic Springback Reshaping, Proceedings of the 2nd International Conference on High Speed Forming, Dortmund Germany, May 04, 2006. http://hdl.handle.net/2003/2706. Accessed 04 May 2015 E. Iriondo, B. Gonzalez, M. Gutierrez, V. Vonhout, G. Daehn, B. Hayes, Electromagnetic Springback Reshaping, Proceedings of the 2nd International Conference on High Speed Forming, Dortmund Germany, May 04, 2006. http://​hdl.​handle.​net/​2003/​2706. Accessed 04 May 2015
5.
Zurück zum Zitat E. Iriondo, M.A. Gutierrez, B. Gonzalez, J.L. Alcaraz, and G.S. Daehn, Electromagnetic Impulse Calibration of High Strength Sheet Metal Structures, J. Mater. Process. Technol., 2011, 211(5), p 909–915CrossRef E. Iriondo, M.A. Gutierrez, B. Gonzalez, J.L. Alcaraz, and G.S. Daehn, Electromagnetic Impulse Calibration of High Strength Sheet Metal Structures, J. Mater. Process. Technol., 2011, 211(5), p 909–915CrossRef
7.
Zurück zum Zitat G.S. Daehn, M. Altynova, V.S. Balanethiram, G. Fenton, M. Padmanabhan, A. Tamhane, and E. Winna, High Velocity Metal Forming: An Old Technology Addresses New Problems, JOM-J. Miner. Met. Mater. Soc. (TMS), 1995, 47(7), p 42–45CrossRef G.S. Daehn, M. Altynova, V.S. Balanethiram, G. Fenton, M. Padmanabhan, A. Tamhane, and E. Winna, High Velocity Metal Forming: An Old Technology Addresses New Problems, JOM-J. Miner. Met. Mater. Soc. (TMS), 1995, 47(7), p 42–45CrossRef
8.
Zurück zum Zitat I.V. Belyy, S.M. Fertik, L.T. Khimenko, Electromagnetic Metal Forming Handbook, (A Translation of the Russian Book: Sprvochnik Po Magnitno-impul’ Snoy Obrabotke Metallov), Translated by M. M. Altynova, Material Science and Engineering Department, Ohio State University, Columbus, 1996 I.V. Belyy, S.M. Fertik, L.T. Khimenko, Electromagnetic Metal Forming Handbook, (A Translation of the Russian Book: Sprvochnik Po Magnitno-impul’ Snoy Obrabotke Metallov), Translated by M. M. Altynova, Material Science and Engineering Department, Ohio State University, Columbus, 1996
9.
Zurück zum Zitat E.J. Bruno, High-Velocity Forming of Metals, American Society of Tool and Manufacturing Engineers, Dearborn, 1968 E.J. Bruno, High-Velocity Forming of Metals, American Society of Tool and Manufacturing Engineers, Dearborn, 1968
10.
Zurück zum Zitat S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Trans. ASM, 1963, 56, p 25–48 S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Trans. ASM, 1963, 56, p 25–48
11.
Zurück zum Zitat G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, Trans. Soc. Automot. Eng., 1968, 77, p 380–387 G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, Trans. Soc. Automot. Eng., 1968, 77, p 380–387
12.
Zurück zum Zitat M.D. Toit and H.G. Steyn, Comparing the Formability of AISI, 304 and AISI, 202 Stainless Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1491–1495CrossRef M.D. Toit and H.G. Steyn, Comparing the Formability of AISI, 304 and AISI, 202 Stainless Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1491–1495CrossRef
13.
Zurück zum Zitat W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, 3rd ed., Cambridge University Press, Cambridge, 2007CrossRef W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, 3rd ed., Cambridge University Press, Cambridge, 2007CrossRef
14.
Zurück zum Zitat G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book, New York, 1988 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book, New York, 1988
15.
Zurück zum Zitat M. Seth, V.J. Vohnout, and G.S. Daehn, Formability of Steel Sheet in High Velocity Impact, J. Mater. Process. Technol., 2005, 168, p 390–400CrossRef M. Seth, V.J. Vohnout, and G.S. Daehn, Formability of Steel Sheet in High Velocity Impact, J. Mater. Process. Technol., 2005, 168, p 390–400CrossRef
16.
Zurück zum Zitat L. Da-hai, Y. Hai-ping, and L. Chun-feng, Quasi-Static-Dynamic Formability of AA 5052-O Sheet Under Uniaxial and Plane-Strain Tension, Trans. Nonferrous Met. Soc. China, 2009, 19, p 318–325CrossRef L. Da-hai, Y. Hai-ping, and L. Chun-feng, Quasi-Static-Dynamic Formability of AA 5052-O Sheet Under Uniaxial and Plane-Strain Tension, Trans. Nonferrous Met. Soc. China, 2009, 19, p 318–325CrossRef
17.
Zurück zum Zitat L. Da-hai, Y. Hai-ping, and L. Chun-feng, Experimental Observations of Quasi-Static-Dynamic Formability in Biaxially Strained AA5052-0, J. Mater. Eng. Perform., 2011, 20, p 223–230CrossRef L. Da-hai, Y. Hai-ping, and L. Chun-feng, Experimental Observations of Quasi-Static-Dynamic Formability in Biaxially Strained AA5052-0, J. Mater. Eng. Perform., 2011, 20, p 223–230CrossRef
18.
Zurück zum Zitat F.-Q. Li, J.-H. Mo, J.-J. Li, L. Huang, and H.-Y. Zhou, Formability of Ti-6Al-4V Titanium Alloy Sheet in Magnetic Pulse Bulging, Mater. Des., 2013, 52, p 337–344CrossRef F.-Q. Li, J.-H. Mo, J.-J. Li, L. Huang, and H.-Y. Zhou, Formability of Ti-6Al-4V Titanium Alloy Sheet in Magnetic Pulse Bulging, Mater. Des., 2013, 52, p 337–344CrossRef
19.
Zurück zum Zitat R.X. Jun, J.C. Jun, L. Qiquan, and F.L. Chun, Effect of Driver Sheet on Magnetic Pulse Forming of AZ31 Magnesium Alloy Sheets, Int. J. Adv. Manuf. Technol., 2014, doi:10.1007/s00170-014-5713-y R.X. Jun, J.C. Jun, L. Qiquan, and F.L. Chun, Effect of Driver Sheet on Magnetic Pulse Forming of AZ31 Magnesium Alloy Sheets, Int. J. Adv. Manuf. Technol., 2014, doi:10.​1007/​s00170-014-5713-y
21.
Zurück zum Zitat A. Tamhane, M. Altynova, and G.S. Daehn, Effect of Sample Size on Ductility in Electromagnetic Ring Expansion, Scr. Metall. Mater., 1996, 34, p 1345–1350CrossRef A. Tamhane, M. Altynova, and G.S. Daehn, Effect of Sample Size on Ductility in Electromagnetic Ring Expansion, Scr. Metall. Mater., 1996, 34, p 1345–1350CrossRef
22.
Zurück zum Zitat S.F. Golovashchenko, Material Formability and Coil Design in Electromagnetic Forming, J. Mater. Eng. Perform., 2007, 16(3), p 314–320CrossRef S.F. Golovashchenko, Material Formability and Coil Design in Electromagnetic Forming, J. Mater. Eng. Perform., 2007, 16(3), p 314–320CrossRef
23.
Zurück zum Zitat M. Kamal and G.S. Daehn, A Uniform Pressure Electromagnetic Actuator For Forming Flat Sheets, J. Manuf. Sci. Eng. (ASME), 2007, 129(2), p 369–379CrossRef M. Kamal and G.S. Daehn, A Uniform Pressure Electromagnetic Actuator For Forming Flat Sheets, J. Manuf. Sci. Eng. (ASME), 2007, 129(2), p 369–379CrossRef
25.
Zurück zum Zitat M. Ahmed, S.K. Panthi, N. Ramakrishnan, A.K. Jha, A.H. Yegneswaran, R. Dasgupta, and S. Ahmed, Alternative Flat Coil Design for Electromagnetic Forming Using FEM, Trans. Nonferrous Met. Soc. China, 2011, 21(3), p 618–625CrossRef M. Ahmed, S.K. Panthi, N. Ramakrishnan, A.K. Jha, A.H. Yegneswaran, R. Dasgupta, and S. Ahmed, Alternative Flat Coil Design for Electromagnetic Forming Using FEM, Trans. Nonferrous Met. Soc. China, 2011, 21(3), p 618–625CrossRef
26.
Zurück zum Zitat W.S. Hwang, J.S. Lee, N.H. Kim, and H.S. Sohn, Joining of Copper Tube to Polyurethane Tube By Electromagnetic Pulse Forming, J. Mater. Process. Technol., 1993, 37(1–4), p 83–93CrossRef W.S. Hwang, J.S. Lee, N.H. Kim, and H.S. Sohn, Joining of Copper Tube to Polyurethane Tube By Electromagnetic Pulse Forming, J. Mater. Process. Technol., 1993, 37(1–4), p 83–93CrossRef
27.
Zurück zum Zitat S.D. Kore, P.P. Date, and S.V. Kulkarni, Electromagnetic Impact Welding of Aluminum to Stainless Steel Sheets, J. Mater. Process. Technol., 2008, 208(1–3), p 486–493CrossRef S.D. Kore, P.P. Date, and S.V. Kulkarni, Electromagnetic Impact Welding of Aluminum to Stainless Steel Sheets, J. Mater. Process. Technol., 2008, 208(1–3), p 486–493CrossRef
28.
Zurück zum Zitat S.D. Kore, P.P. Date, and S.V. Kulkarni, Effect of Process Parameters on Electromagnetic Impact Welding of Aluminum Sheets, Int. J. Impact Eng., 2007, 34(8), p 1327–1341CrossRef S.D. Kore, P.P. Date, and S.V. Kulkarni, Effect of Process Parameters on Electromagnetic Impact Welding of Aluminum Sheets, Int. J. Impact Eng., 2007, 34(8), p 1327–1341CrossRef
29.
Zurück zum Zitat R.K. Rajawat, S.V. Desai, M. R. Kulkarni, D. Rani, K.V. Nagesh, R.C. Sethi, Electromagnetic Forming: A Technique With Potential Applications in Accelerators, Proceeding of APAC, Gyeongju, Korea, 2004 R.K. Rajawat, S.V. Desai, M. R. Kulkarni, D. Rani, K.V. Nagesh, R.C. Sethi, Electromagnetic Forming: A Technique With Potential Applications in Accelerators, Proceeding of APAC, Gyeongju, Korea, 2004
30.
Zurück zum Zitat M. Kamal, J. Shang, V. Cheng, S. Hatkevich, and G.S. Daehn, Agile Manufacturing of a Micro-Embossed Case by a Two-Step Electromagnetic Forming Process, J. Mater. Process. Technol., 2007, 190, p 41–50CrossRef M. Kamal, J. Shang, V. Cheng, S. Hatkevich, and G.S. Daehn, Agile Manufacturing of a Micro-Embossed Case by a Two-Step Electromagnetic Forming Process, J. Mater. Process. Technol., 2007, 190, p 41–50CrossRef
31.
Zurück zum Zitat V.S. Balanethiram and G.S. Daehn, Enhance Formability of Interstitial Free Iron at High Strain Rates, Scr. Metall. Mater., 1992, 27, p 1783–1788CrossRef V.S. Balanethiram and G.S. Daehn, Enhance Formability of Interstitial Free Iron at High Strain Rates, Scr. Metall. Mater., 1992, 27, p 1783–1788CrossRef
32.
Zurück zum Zitat V.S. Balanethiram and G.S. Daehn, Hyper Plasticity: Increased Forming Limits at High Workpiece Velocity, Scr. Metall. Mater., 1994, 31, p 515–520CrossRef V.S. Balanethiram and G.S. Daehn, Hyper Plasticity: Increased Forming Limits at High Workpiece Velocity, Scr. Metall. Mater., 1994, 31, p 515–520CrossRef
33.
Zurück zum Zitat V.S. Balanethiram, X. Hu, M. Altynova, and V.S. Balanethiram, Hyper Plasticity: Enhance Formability at High Rates, J. Mater. Process. Technol., 1994, 45, p 595–660CrossRef V.S. Balanethiram, X. Hu, M. Altynova, and V.S. Balanethiram, Hyper Plasticity: Enhance Formability at High Rates, J. Mater. Process. Technol., 1994, 45, p 595–660CrossRef
34.
Zurück zum Zitat W. Homberg, C. Beerwald, A. Pröbsting, Investigation of Electrohydraulic Forming Process with Respect to the Design of Sharp Edged Contours, Proceeding of the 4th International Conference on High Speed Forming, Columbus Ohio, USA, 2010, pp. 58–64. https://eldorado.tu-dortmund.de/handle/2003/27198. Accessed 10 Sept 2015 W. Homberg, C. Beerwald, A. Pröbsting, Investigation of Electrohydraulic Forming Process with Respect to the Design of Sharp Edged Contours, Proceeding of the 4th International Conference on High Speed Forming, Columbus Ohio, USA, 2010, pp. 58–64. https://​eldorado.​tu-dortmund.​de/​handle/​2003/​27198. Accessed 10 Sept 2015
35.
36.
Zurück zum Zitat S.F. Golovashchenko, A.J. Gillard, A.V. Mamutov, J.F. Bonnen, and Z. Tang, Electrohydraulic Trimming of Advanced and Ultra High Strength Steels, J. Mater. Process. Technol., 2014, 214, p 1027–1043CrossRef S.F. Golovashchenko, A.J. Gillard, A.V. Mamutov, J.F. Bonnen, and Z. Tang, Electrohydraulic Trimming of Advanced and Ultra High Strength Steels, J. Mater. Process. Technol., 2014, 214, p 1027–1043CrossRef
37.
Zurück zum Zitat S.F. Golovashchenko, A.J. Gillard, A.V. Mamutov, and R. Ibrahim, Pulsed Electrohydraulic Springback Calibration of Parts Stamped from Advanced High Strength Steel, J. Mater. Process. Technol., 2014, 214, p 2796–2810CrossRef S.F. Golovashchenko, A.J. Gillard, A.V. Mamutov, and R. Ibrahim, Pulsed Electrohydraulic Springback Calibration of Parts Stamped from Advanced High Strength Steel, J. Mater. Process. Technol., 2014, 214, p 2796–2810CrossRef
38.
Zurück zum Zitat S.F. Golovashchenko, N.M. Bessonov, and A.M. Illinich, Two-Step Method of Forming Complex Shapes From Sheet Metal, J. Mater. Process. Technol., 2011, 211, p 875–885CrossRef S.F. Golovashchenko, N.M. Bessonov, and A.M. Illinich, Two-Step Method of Forming Complex Shapes From Sheet Metal, J. Mater. Process. Technol., 2011, 211, p 875–885CrossRef
39.
Zurück zum Zitat A. Rohatgi, E.V. Stephens, R.W. Davies et al., Electrohydraulic Forming of Sheet Metals: Free-Forming vs. Conical Die Forming, J. Mater. Process. Technol., 2012, 212, p 1070–1079CrossRef A. Rohatgi, E.V. Stephens, R.W. Davies et al., Electrohydraulic Forming of Sheet Metals: Free-Forming vs. Conical Die Forming, J. Mater. Process. Technol., 2012, 212, p 1070–1079CrossRef
40.
Zurück zum Zitat S.F. Golovashchenko, A.J. Gillard, and A.V. Mamutov, Formability of Dual Phase Steels in Electrohydraulic Forming, J. Mater. Process. Technol., 2013, 213(7), p 1191–1212CrossRef S.F. Golovashchenko, A.J. Gillard, and A.V. Mamutov, Formability of Dual Phase Steels in Electrohydraulic Forming, J. Mater. Process. Technol., 2013, 213(7), p 1191–1212CrossRef
41.
Zurück zum Zitat A.J. Gillard, S.F. Golovashchenko, and A.V. Mamutov, Effect Of Quasi-Static Prestrain on the Formability of Dual Phase Steels in Electrohydraulic Forming, J. Manuf. Processes, 2013, 15(2), p 201–218CrossRef A.J. Gillard, S.F. Golovashchenko, and A.V. Mamutov, Effect Of Quasi-Static Prestrain on the Formability of Dual Phase Steels in Electrohydraulic Forming, J. Manuf. Processes, 2013, 15(2), p 201–218CrossRef
42.
Zurück zum Zitat ASTME- E8/E8M Standard, Standard Test Methods for Tension Testing of Metallic Materials [Metric], ASTM International ASTME- E8/E8M Standard, Standard Test Methods for Tension Testing of Metallic Materials [Metric], ASTM International
44.
Zurück zum Zitat S.K. Panda and D.R. Kumar, Study of Formability of Tailor-Welded Blanks in Plane-Strain Stretch Forming, Int. J. Adv. Manuf. Technol., 2009, 44, p 675–685CrossRef S.K. Panda and D.R. Kumar, Study of Formability of Tailor-Welded Blanks in Plane-Strain Stretch Forming, Int. J. Adv. Manuf. Technol., 2009, 44, p 675–685CrossRef
45.
Zurück zum Zitat S.K. Panda and D.R. Kumar, Experimental and Numerical Studies on the Forming Behavior of Tailor Welded Steel Sheets in Biaxial Stretch Forming, Mater. Des., 2010, 31, p 1365–1383CrossRef S.K. Panda and D.R. Kumar, Experimental and Numerical Studies on the Forming Behavior of Tailor Welded Steel Sheets in Biaxial Stretch Forming, Mater. Des., 2010, 31, p 1365–1383CrossRef
46.
Zurück zum Zitat D.R. Kumar and K. Swaminathan, Formability of Two Aluminum Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252 D.R. Kumar and K. Swaminathan, Formability of Two Aluminum Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252
47.
Zurück zum Zitat S.S. Hecker, Simple Technique for Determining Forming Limit Curves, Sheet Met. Ind., 1975, 52, p 671–675 S.S. Hecker, Simple Technique for Determining Forming Limit Curves, Sheet Met. Ind., 1975, 52, p 671–675
48.
Zurück zum Zitat X. Hu and G.S. Daehn, Effect of Velocity on Flow Localization in Tension, Acta Mater., 1996, 44, p 1021–1033CrossRef X. Hu and G.S. Daehn, Effect of Velocity on Flow Localization in Tension, Acta Mater., 1996, 44, p 1021–1033CrossRef
50.
Zurück zum Zitat K. Swaminathan and K.A. Padmanabhan, Some Investigations on the Forming Behavior of An Indigenous Extra-Deep Drawing Low Carbon Steel-Part I, Trans. Indian Inst. Met., 1991, 44(3), p 231–247 K. Swaminathan and K.A. Padmanabhan, Some Investigations on the Forming Behavior of An Indigenous Extra-Deep Drawing Low Carbon Steel-Part I, Trans. Indian Inst. Met., 1991, 44(3), p 231–247
51.
Zurück zum Zitat K. Swaminathan, P.P. Date, and K.A. Padmanabhan, Room Temperature Formability and Fracture Behaviour of a High Strength Al-Zn-Mg Alloy, J. Eng. Mater. Technol. (ASME), 1991, 113, p 236–243CrossRef K. Swaminathan, P.P. Date, and K.A. Padmanabhan, Room Temperature Formability and Fracture Behaviour of a High Strength Al-Zn-Mg Alloy, J. Eng. Mater. Technol. (ASME), 1991, 113, p 236–243CrossRef
52.
Zurück zum Zitat P.P. Date, K. Swaminathan, and K.A. Padmanabhan, Room Temperature Forming Limit Diagram and Tensile Behaviour up to 200°C of an Al-Ca-Zn Superplastic Alloy, J. Mater. Sci., 1988, 23, p 135–139CrossRef P.P. Date, K. Swaminathan, and K.A. Padmanabhan, Room Temperature Forming Limit Diagram and Tensile Behaviour up to 200°C of an Al-Ca-Zn Superplastic Alloy, J. Mater. Sci., 1988, 23, p 135–139CrossRef
Metadaten
Titel
Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process
verfasst von
Meraj Ahmed
D. Ravi Kumar
M. Nabi
Publikationsdatum
30.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2446-0

Weitere Artikel der Ausgabe 1/2017

Journal of Materials Engineering and Performance 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.