Skip to main content
Top
Published in: Journal of Iron and Steel Research International 5/2020

02-04-2020 | Original Paper

Recrystallization and mechanical properties of cold-rolled FeCrAl alloy during annealing

Authors: Xiao-long Liang, Hui Wang, Qian-fu Pan, Ji-yun Zheng, Hui-qun Liu, Rui-qian Zhang, Yang Xu, Yu Xu, Dan-qing Yi

Published in: Journal of Iron and Steel Research International | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of cold rolling and annealing on the microstructure and properties of an Fe–13Cr–4.5Al–2.2Mo–1.1Nb alloy was investigated. The results showed that the recrystallization rate increased with increasing annealing temperature and rolling reduction. Recrystallization kinetics was constructed based on Johnson–Mehl–Avrami–Kolmogorov equation. The apparent activation energies of recrystallization were 161.385, 144.770, and 95.362 kJ/mol for the samples with 30%, 50%, and 70% cold-rolling reduction, respectively. With the cold-rolling reduction increasing, the texture γ fiber partly changed to 〈100〉//ND. After annealing, γ fiber of the alloy with 30% thickness reduction retained, the subgrains disappeared through merging, and the proportion of coincident site lattice grain boundaries increased and became more continuous. 30% cold-rolling reduction alloy annealed at 730 °C for 120 min not only possessed relatively high yield strength (YS) of ~ 730 MPa and ultimate tensile strength (UTS) of ~ 880 MPa, but also exhibited elongation of ~ 16% at room temperature. After annealing at 730 °C for 120 min, 70% cold-rolled alloy has finer and more uniform grain, with higher elongation of ~ 22%, YS of ~ 615 MPa and UTS of ~ 774 MPa. The mechanism of mechanical properties difference was explained according to Schmid factor analysis. These results provided an effective way for tuning strength and ductility of FeCrAl alloy.
Literature
[1]
go back to reference R.H. Jones, H.L. Heinisch, K.A. McCarthy, J. Nucl. Mater. 271–272 (1999) 518–525.CrossRef R.H. Jones, H.L. Heinisch, K.A. McCarthy, J. Nucl. Mater. 271–272 (1999) 518–525.CrossRef
[2]
go back to reference T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, J. Nucl. Mater. 427 (2012) 396–400.CrossRef T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, J. Nucl. Mater. 427 (2012) 396–400.CrossRef
[3]
go back to reference K.G. Field, M.N. Gussev, Y. Yamamoto, L.L. Snead, J. Nucl. Mater. 454 (2014) 352–358.CrossRef K.G. Field, M.N. Gussev, Y. Yamamoto, L.L. Snead, J. Nucl. Mater. 454 (2014) 352–358.CrossRef
[4]
go back to reference K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, J. Nucl. Mater. 465 (2015) 746–755.CrossRef K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, J. Nucl. Mater. 465 (2015) 746–755.CrossRef
[5]
go back to reference Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, J. Nucl. Mater. 467 (2015) 703–716.CrossRef Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, J. Nucl. Mater. 467 (2015) 703–716.CrossRef
[6]
go back to reference K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448 (2014) 420–435.CrossRef K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448 (2014) 420–435.CrossRef
[8]
go back to reference R.E. Pawel, J.V. Cathcart, R.A. Mckee, J. Electrochem. Soc. 126 (1979) 1105–1111.CrossRef R.E. Pawel, J.V. Cathcart, R.A. Mckee, J. Electrochem. Soc. 126 (1979) 1105–1111.CrossRef
[9]
go back to reference J. Zhang, Z.L. Tian, H.B. Zhang, L. Zhang, J.Y. Wang, J. Mater. Sci. Technol. 35 (2019) 1–5.CrossRef J. Zhang, Z.L. Tian, H.B. Zhang, L. Zhang, J.Y. Wang, J. Mater. Sci. Technol. 35 (2019) 1–5.CrossRef
[10]
go back to reference B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, J. Nucl. Mater. 440 (2013) 420–427.CrossRef B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, J. Nucl. Mater. 440 (2013) 420–427.CrossRef
[11]
go back to reference Z.G. Zhang, F. Gesmundo, P.Y. Hou, Y. Niu, Corros. Sci. 48 (2006) 741–765.CrossRef Z.G. Zhang, F. Gesmundo, P.Y. Hou, Y. Niu, Corros. Sci. 48 (2006) 741–765.CrossRef
[12]
go back to reference X.Y. Yuan, Y. Zhao, X. Li, L.Q. Chen, J. Mater. Sci. Technol. 33 (2017) 1555–1560.CrossRef X.Y. Yuan, Y. Zhao, X. Li, L.Q. Chen, J. Mater. Sci. Technol. 33 (2017) 1555–1560.CrossRef
[13]
go back to reference R.R. Lin, W. Jin, M.Z. Cao, R. Yang, J. Mater. Sci. Technol. 27 (2011) 471–474.CrossRef R.R. Lin, W. Jin, M.Z. Cao, R. Yang, J. Mater. Sci. Technol. 27 (2011) 471–474.CrossRef
[14]
go back to reference S. Feng, W. Han, H.L. Luo, G. Karin, C.H. Li, J. Iron Steel Res. Int. 17 (2010) No. 2, 74–78.CrossRef S. Feng, W. Han, H.L. Luo, G. Karin, C.H. Li, J. Iron Steel Res. Int. 17 (2010) No. 2, 74–78.CrossRef
[15]
go back to reference H.H. Xiong, H.H. Zhang, H.N. Zhang, Y. Zhou, J. Iron Steel Res. Int. 24 (2017) 328–334.CrossRef H.H. Xiong, H.H. Zhang, H.N. Zhang, Y. Zhou, J. Iron Steel Res. Int. 24 (2017) 328–334.CrossRef
[16]
[19]
[20]
go back to reference L.J. Chai, B.F. Luan, K.L. Murty, Q. Liu, Acta Mater. 61 (2013) 3099–3109.CrossRef L.J. Chai, B.F. Luan, K.L. Murty, Q. Liu, Acta Mater. 61 (2013) 3099–3109.CrossRef
[21]
go back to reference Y.L. Jiang, H.Q. Liu, D.Q. Yi, G.Y. Lin, X. Dai, R.Q. Zhang, Y.D. Sun, S.Q. Liu, Trans. Nonferr. Met. Soc. China 28 (2018) 651–661.CrossRef Y.L. Jiang, H.Q. Liu, D.Q. Yi, G.Y. Lin, X. Dai, R.Q. Zhang, Y.D. Sun, S.Q. Liu, Trans. Nonferr. Met. Soc. China 28 (2018) 651–661.CrossRef
[22]
go back to reference A. Rollett, F.J. Humphreys, G.S. Rohrer, Y.M. Hatherl, Recrystallization and related annealing phenomena, Amsterdam, Elsevier, 2004. A. Rollett, F.J. Humphreys, G.S. Rohrer, Y.M. Hatherl, Recrystallization and related annealing phenomena, Amsterdam, Elsevier, 2004.
[23]
go back to reference I. Samajdar, B. Verlinden, P. Van Houtte, D. Vanderschueren, Mater. Sci. Eng. A 238 (1997) 343–350.CrossRef I. Samajdar, B. Verlinden, P. Van Houtte, D. Vanderschueren, Mater. Sci. Eng. A 238 (1997) 343–350.CrossRef
[25]
[26]
go back to reference D.D. Zhuang, L.G. Wang, Y. Huang, X.M. Li, H.Y. Zhang, D.W. Ren, J. Iron Steel Res. Int. 24 (2017) 84–90.CrossRef D.D. Zhuang, L.G. Wang, Y. Huang, X.M. Li, H.Y. Zhang, D.W. Ren, J. Iron Steel Res. Int. 24 (2017) 84–90.CrossRef
[27]
[29]
[30]
go back to reference R.W. Cahn, P. Haasen, E.J. Kramer, Materisls science and technology: a comprehensive treatment, New York, USA, 1991. R.W. Cahn, P. Haasen, E.J. Kramer, Materisls science and technology: a comprehensive treatment, New York, USA, 1991.
[31]
[35]
go back to reference E.M. Lehockey, D. Limoges, G. Palumbo, J. Sklarchuk, K. Tomantschger, A. Vincze, J. Power Sources 78 (1999) 79–83.CrossRef E.M. Lehockey, D. Limoges, G. Palumbo, J. Sklarchuk, K. Tomantschger, A. Vincze, J. Power Sources 78 (1999) 79–83.CrossRef
[36]
[37]
go back to reference P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scripta Metall. Mater. 33 (1995) 1387–1392.CrossRef P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scripta Metall. Mater. 33 (1995) 1387–1392.CrossRef
[38]
go back to reference M. Ma, H. Ding, Z.Y. Tang, J.W. Zhao, Z.H. Jing, G.W. Fan, J. Iron Steel Res. Int. 23 (2016) 244–252.CrossRef M. Ma, H. Ding, Z.Y. Tang, J.W. Zhao, Z.H. Jing, G.W. Fan, J. Iron Steel Res. Int. 23 (2016) 244–252.CrossRef
Metadata
Title
Recrystallization and mechanical properties of cold-rolled FeCrAl alloy during annealing
Authors
Xiao-long Liang
Hui Wang
Qian-fu Pan
Ji-yun Zheng
Hui-qun Liu
Rui-qian Zhang
Yang Xu
Yu Xu
Dan-qing Yi
Publication date
02-04-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 5/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00387-z

Other articles of this Issue 5/2020

Journal of Iron and Steel Research International 5/2020 Go to the issue

Premium Partners