Skip to main content
Top

2017 | OriginalPaper | Chapter

Reducing Losses in Magnetic Thin Films Through Nanoscale Surface Patterning

Authors : Goran Rasic, Branislav Vlahovic, Justin Schwartz

Published in: Proceedings of the IV Advanced Ceramics and Applications Conference

Publisher: Atlantis Press

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biaxially textured nickel ferrite (NFO) thin films were grown by chemical solution deposition on c-plane sapphire substrates. Crystal structure and chemical composition was evaluated using X-ray Diffraction (XRD). Nanoimprint lithography (NIL) technique using a polydimethylsiloxane (PDMS) stamp was used imprint the films. A method for large scale precise patterning of was demonstrated. Quality of the transferred pattern was evaluated using atomic force (AFM) and transmission electron microscopies (TEM). Magnetic measurements were performed using superconducting quantum interference device (SQUID) and showed large decrease of coercivity in patterned samples. Probable causes for coercivity reduction have been investigated and surface patterning has been shown to be the direct cause of the coercivity reduction phenomena. Coercivity reduction has been shown to translate to thicker films with layer-by-layer manufacturing method yielding better results. The effect of changing the surface pattern on the topography, crystallography and magnetic properties was investigated and different trends were observed for the measurements done with the magnetic field parallel and perpendicular to the film surface. In all cases, the coercivity was reduced relative to the planar (nonpatterned) films and relative to the base layer onto which the patterned film was deposited. All films showed a similar magnetic response as indicated by similarities in the curve shape. Crystallography measurements showed the imprint process did not affect the grain growth and orientation regardless of the surface feature size as indicated by all films having virtually identical diffraction patterns. The lower limit of surface patterning here was shown to be around 500 nm. Below 750 nm, the pattern quality degraded and the feature height reduced. The domain configurations of the planar and patterned films were investigated. Deviation from the expected domain configuration was found in the patterned films. The origin of the observed domain structure and coercivity reduction has been shown to be the surface topography induced change in the minimum energy configuration of the sample. This results in the minimization of the total sample magnetization through formation of stripe domains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (IEEE/Wiley, Hoboken, NJ, 2009) B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (IEEE/Wiley, Hoboken, NJ, 2009)
2.
go back to reference H. Kronmüller, S.S.P. Parkin, Handbook of magnetism and advanced magnetic materials (Wiley, Hoboken, NJ, 2007)CrossRef H. Kronmüller, S.S.P. Parkin, Handbook of magnetism and advanced magnetic materials (Wiley, Hoboken, NJ, 2007)CrossRef
3.
go back to reference N.A. Spaldin, Magnetic materials: fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, New York, 2011) N.A. Spaldin, Magnetic materials: fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, New York, 2011)
4.
go back to reference J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, K.C. Yoo, Thin-Film Ferrites for Microwave and Millimeter-Wave Applications. J. Magn. Magn. Mater. 83, 419–424 (1990)CrossRef J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, K.C. Yoo, Thin-Film Ferrites for Microwave and Millimeter-Wave Applications. J. Magn. Magn. Mater. 83, 419–424 (1990)CrossRef
5.
go back to reference E. Otsuki, S. Yamada, T. Otsuka, K. Shoji, T. Sato, Microstructure and physical properties of Mn-Zn ferrites for high-frequency power supplies. J. Appl. Phys. 69, 5942–5944 (1991)CrossRef E. Otsuki, S. Yamada, T. Otsuka, K. Shoji, T. Sato, Microstructure and physical properties of Mn-Zn ferrites for high-frequency power supplies. J. Appl. Phys. 69, 5942–5944 (1991)CrossRef
6.
go back to reference J. Smit, H.P.J. Wijn, G.E. Luton, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. [S.l.: s.n.] (Wiley, USA, 1959) J. Smit, H.P.J. Wijn, G.E. Luton, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. [S.l.: s.n.] (Wiley, USA, 1959)
7.
go back to reference U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, et al., NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mat. 18, 1733–1736 (2006) U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, et al., NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mat. 18, 1733–1736 (2006)
8.
go back to reference G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (2010) G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (2010)
9.
go back to reference R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. A-Mat. Sci. Process 106, 207–211 (2012)CrossRef R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. A-Mat. Sci. Process 106, 207–211 (2012)CrossRef
10.
go back to reference M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515–519 (2009)CrossRef M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515–519 (2009)CrossRef
11.
go back to reference M.G. Chapline, S.X. Wang, Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006) M.G. Chapline, S.X. Wang, Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006)
12.
go back to reference P. Zhao, Z.L. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, et al., Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94 (2009) P. Zhao, Z.L. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, et al., Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94 (2009)
13.
go back to reference S.Y. Chou, Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652–671 (1997)CrossRef S.Y. Chou, Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652–671 (1997)CrossRef
14.
go back to reference C.A. Ross, S. Haratani, F.J. Castano, Y. Hao, M. Hwang, M. Shima et al., Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848–6853 (2002)CrossRef C.A. Ross, S. Haratani, F.J. Castano, Y. Hao, M. Hwang, M. Shima et al., Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848–6853 (2002)CrossRef
15.
go back to reference M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 38, R123–R152 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 38, R123–R152 (2005)CrossRef
16.
go back to reference L.Z. Lin, Y.W. Li, A.K. Soh, F.X. Li, A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113 (2013) L.Z. Lin, Y.W. Li, A.K. Soh, F.X. Li, A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113 (2013)
17.
go back to reference C.N. Chinnasamy, S.D. Yoon, A. Yang, A. Baraskar, C. Vittoria, V.G. Harris, Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101 (2007) C.N. Chinnasamy, S.D. Yoon, A. Yang, A. Baraskar, C. Vittoria, V.G. Harris, Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101 (2007)
18.
go back to reference G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111 (2012) G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111 (2012)
19.
go back to reference C.M. Williams, D.B. Chrisey, P. Lubitz, K.S. Grabowski, C.M. Cotell, The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-ferrite films. J. Appl. Phys. 75, 1676–1680 (1994)CrossRef C.M. Williams, D.B. Chrisey, P. Lubitz, K.S. Grabowski, C.M. Cotell, The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-ferrite films. J. Appl. Phys. 75, 1676–1680 (1994)CrossRef
20.
go back to reference R. Datta, S. Kanuri, S.V. Karthik, D. Mazumdar, J.X. Ma, A. Gupta, Formation of antiphase domains in NiFe2O4 thin films deposited on different substrates, Appl. Phys. Lett. 97 (2010) R. Datta, S. Kanuri, S.V. Karthik, D. Mazumdar, J.X. Ma, A. Gupta, Formation of antiphase domains in NiFe2O4 thin films deposited on different substrates, Appl. Phys. Lett. 97 (2010)
21.
go back to reference P. Samarasekara, R. Rani, F.J. Cadieu, S.A. Shaheen, Variable texture NiO/Fe2O3 ferrite films prepared by pulsed laser deposition. J. Appl. Phys. 79, 5425–5427 (1996)CrossRef P. Samarasekara, R. Rani, F.J. Cadieu, S.A. Shaheen, Variable texture NiO/Fe2O3 ferrite films prepared by pulsed laser deposition. J. Appl. Phys. 79, 5425–5427 (1996)CrossRef
22.
go back to reference J.H. Park, Y.K. Jeong, S. Ryu, J.Y. Son, H.M. Jang, Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mg1/3Nb2/3)O-3-PbTiO3. Appl. Phys. Lett. 96 (2010) J.H. Park, Y.K. Jeong, S. Ryu, J.Y. Son, H.M. Jang, Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mg1/3Nb2/3)O-3-PbTiO3. Appl. Phys. Lett. 96 (2010)
23.
go back to reference M.T. Johnson, P.G. Kotula, C.B. Carter, Growth of nickel ferrite thin films using pulsed-laser deposition. J. Cryst. Growth 206, 299–307 (1999)CrossRef M.T. Johnson, P.G. Kotula, C.B. Carter, Growth of nickel ferrite thin films using pulsed-laser deposition. J. Cryst. Growth 206, 299–307 (1999)CrossRef
24.
go back to reference F. Rigato, S. Estrade, J. Arbiol, F. Peiro, U. Luders, X. Marti et al., Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mat. Sci. Eng. B-Solid State Mat. Adv. Technol. 144, 43–48 (2007)CrossRef F. Rigato, S. Estrade, J. Arbiol, F. Peiro, U. Luders, X. Marti et al., Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mat. Sci. Eng. B-Solid State Mat. Adv. Technol. 144, 43–48 (2007)CrossRef
25.
go back to reference S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyory, T. Siegrist, C.H. Chen, et al., Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mat. Res. 11, 1187–1198 (1996) S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyory, T. Siegrist, C.H. Chen, et al., Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mat. Res. 11, 1187–1198 (1996)
26.
go back to reference R. Datta, B. Loukya, N. Li, A. Gupta, Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 345, 44–50 (2012)CrossRef R. Datta, B. Loukya, N. Li, A. Gupta, Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 345, 44–50 (2012)CrossRef
27.
go back to reference N. Li, Y.H.A. Wang, M.N. Iliev, T.M. Klein, A. Gupta, Growth of atomically smooth epitaxial nickel ferrite films by direct liquid injection CVD. Chem. Vap. Deposition 17, 261–269 (2011)CrossRef N. Li, Y.H.A. Wang, M.N. Iliev, T.M. Klein, A. Gupta, Growth of atomically smooth epitaxial nickel ferrite films by direct liquid injection CVD. Chem. Vap. Deposition 17, 261–269 (2011)CrossRef
28.
go back to reference A.G. Fitzgerald, An investigation of the growth of nickel ferrite films on magnesium-oxide substrates. J. Mat. Sci. 22, 1887–1893 (1987)CrossRef A.G. Fitzgerald, An investigation of the growth of nickel ferrite films on magnesium-oxide substrates. J. Mat. Sci. 22, 1887–1893 (1987)CrossRef
29.
go back to reference D.M. Lind, S.D. Berry, G. Chern, H. Mathias, L.R. Testardi, Characterization of the structural and magnetic-ordering of Fe3O4/NiO superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218–6220 (1991)CrossRef D.M. Lind, S.D. Berry, G. Chern, H. Mathias, L.R. Testardi, Characterization of the structural and magnetic-ordering of Fe3O4/NiO superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218–6220 (1991)CrossRef
30.
go back to reference R.J. Kennedy, Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation. J. Appl. Phys. 79, 4570 (1996)CrossRef R.J. Kennedy, Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation. J. Appl. Phys. 79, 4570 (1996)CrossRef
31.
go back to reference G.F. Qiao, Y. Hong, G.P. Song, Potential sensor based on electrochemical NiFe2O4 film prepared by EB-PVD. IEEE Sens. J. 12, 2664–2665 (2012)CrossRef G.F. Qiao, Y. Hong, G.P. Song, Potential sensor based on electrochemical NiFe2O4 film prepared by EB-PVD. IEEE Sens. J. 12, 2664–2665 (2012)CrossRef
32.
go back to reference S. Seifikar, B. Calandro, E. Deeb, E. Sachet, J.J. Yang, J.P. Maria, et al., Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112 (2012) S. Seifikar, B. Calandro, E. Deeb, E. Sachet, J.J. Yang, J.P. Maria, et al., Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112 (2012)
33.
go back to reference S. Seifikar, B. Calandro, G. Rasic, E. Deeb, J. Yang, N. Bassiri-Gharb et al., Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 3050–3053 (2013) S. Seifikar, B. Calandro, G. Rasic, E. Deeb, J. Yang, N. Bassiri-Gharb et al., Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 3050–3053 (2013)
34.
go back to reference S. Seifikar, A. Tabei, E. Sachet, T. Rawdanowicz, N. Bassiri-Gharb, J. Schwartz, Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt(111) via sol-gel processing. J. Appl. Phys. 112 (2012) S. Seifikar, A. Tabei, E. Sachet, T. Rawdanowicz, N. Bassiri-Gharb, J. Schwartz, Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt(111) via sol-gel processing. J. Appl. Phys. 112 (2012)
35.
go back to reference Y.N. Xia, G.M. Whitesides, Soft lithography. Angewandte Chemie-International Edition 37, 551–575 (1998)CrossRef Y.N. Xia, G.M. Whitesides, Soft lithography. Angewandte Chemie-International Edition 37, 551–575 (1998)CrossRef
36.
go back to reference L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRef L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRef
37.
go back to reference O.F. Gobel, M. Nedelcu, U. Steiner, Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131–1136 (2007)CrossRef O.F. Gobel, M. Nedelcu, U. Steiner, Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131–1136 (2007)CrossRef
38.
go back to reference C. Peroz, V. Chauveau, E. Barthel, E. Sondergard, Nanoimprint lithography on silica sol-gels: a simple route to sequential patterning. Adv. Mat. 21, 555–558 (2009) C. Peroz, V. Chauveau, E. Barthel, E. Sondergard, Nanoimprint lithography on silica sol-gels: a simple route to sequential patterning. Adv. Mat. 21, 555–558 (2009)
39.
go back to reference S.S. Dinachali, M.S.M. Saifullah, R. Ganesan, E.S. Thian, C.B. He, A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201–2211 (2013)CrossRef S.S. Dinachali, M.S.M. Saifullah, R. Ganesan, E.S. Thian, C.B. He, A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201–2211 (2013)CrossRef
40.
go back to reference T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography for semiconductor devices and future patterning innovation. Altern. Lithogr. Technolo. Iii, 7970 (2011) T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography for semiconductor devices and future patterning innovation. Altern. Lithogr. Technolo. Iii, 7970 (2011)
41.
go back to reference M. Malloy, L.C. Litt, Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010)CrossRef M. Malloy, L.C. Litt, Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010)CrossRef
42.
go back to reference D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnology, 19 (2008) D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnology, 19 (2008)
43.
go back to reference R.F. Pease, S.Y. Chou, Lithography and other patterning techniques for future electronics. Proc. IEEE 96, 248–270 (2008)CrossRef R.F. Pease, S.Y. Chou, Lithography and other patterning techniques for future electronics. Proc. IEEE 96, 248–270 (2008)CrossRef
44.
go back to reference W. Wu, Z.N. Yu, S.Y. Wang, R.S. Williams, Y.M. Liu, C. Sun, et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90 (2007) W. Wu, Z.N. Yu, S.Y. Wang, R.S. Williams, Y.M. Liu, C. Sun, et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90 (2007)
45.
go back to reference S.X. Dai, Y. Wang, D.B. Zhang, X. Han, Q. Shi, S.J. Wang et al., Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel. Sci. Technol. 60, 17–22 (2011)CrossRef S.X. Dai, Y. Wang, D.B. Zhang, X. Han, Q. Shi, S.J. Wang et al., Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel. Sci. Technol. 60, 17–22 (2011)CrossRef
46.
go back to reference T. Glinsner, P. Lindner, M. Muhlberger, I. Bergmair, R. Schoftner, K. Hingerl et al., Fabrication of 3D-photonic crystals via UV-nanoimprint lithography. J. Vac. Sci. Technol. B 25, 2337–2340 (2007)CrossRef T. Glinsner, P. Lindner, M. Muhlberger, I. Bergmair, R. Schoftner, K. Hingerl et al., Fabrication of 3D-photonic crystals via UV-nanoimprint lithography. J. Vac. Sci. Technol. B 25, 2337–2340 (2007)CrossRef
47.
go back to reference J.B. Goodenough, Summary of losses in magnetic materials. IEEE Transac. Magnet. 38, 3398–3408 (2002)CrossRef J.B. Goodenough, Summary of losses in magnetic materials. IEEE Transac. Magnet. 38, 3398–3408 (2002)CrossRef
48.
go back to reference S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications. Kluwer Academic, Boston, Mass, London (2005) S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications. Kluwer Academic, Boston, Mass, London (2005)
49.
go back to reference C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Boston, 1990) C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Boston, 1990)
50.
go back to reference N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: a review. Indian J. Phys. Proceed. Indian Assoc. Cultivation Sci. 83, 493–502 (2009) N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: a review. Indian J. Phys. Proceed. Indian Assoc. Cultivation Sci. 83, 493–502 (2009)
51.
go back to reference G.A. Luurtsema, Spin coating for rectangular substrates: electronics research laboratory, college of engineering, University of California (1997) G.A. Luurtsema, Spin coating for rectangular substrates: electronics research laboratory, college of engineering, University of California (1997)
52.
go back to reference V. Trabadelo, H. Schift, S. Merino, S. Bellini, and J. Gobrecht, Measurement of demolding forces in full wafer thermal nanoimprint. Microelectro. Eng. 85, 907–909 (2008) V. Trabadelo, H. Schift, S. Merino, S. Bellini, and J. Gobrecht, Measurement of demolding forces in full wafer thermal nanoimprint. Microelectro. Eng. 85, 907–909 (2008)
53.
go back to reference R. Kirchner, A. Finn, R. Landgraf, L. Nueske, M. Vogler, W.J. Fischer, UV-based nanoimprint lithography: Toward direct patterning of functional polymers. J. Photopolym. Sci. Technol. 25, 197–206 (2012)CrossRef R. Kirchner, A. Finn, R. Landgraf, L. Nueske, M. Vogler, W.J. Fischer, UV-based nanoimprint lithography: Toward direct patterning of functional polymers. J. Photopolym. Sci. Technol. 25, 197–206 (2012)CrossRef
54.
go back to reference G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, R. Fodisch, High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application. J. Vacuum Sci. Technol. B, 28, C6m57–C6m62 (2010) G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, R. Fodisch, High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application. J. Vacuum Sci. Technol. B, 28, C6m57–C6m62 (2010)
55.
go back to reference K. Ishibashi, H. Goto, T. Kasahara, J. Mizuno, S. Shoji, Large area nano pattern fabrication using improved step and repeat UV nanoimprint. J. Photopolym. Sci. Technol. 25, 235–238 (2012)CrossRef K. Ishibashi, H. Goto, T. Kasahara, J. Mizuno, S. Shoji, Large area nano pattern fabrication using improved step and repeat UV nanoimprint. J. Photopolym. Sci. Technol. 25, 235–238 (2012)CrossRef
56.
go back to reference C. Peroz, S. Dhuey, M. Volger, Y. Wu, D. Olynick, S. Cabrini, Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices. Nanotechnology, 21 (2010) C. Peroz, S. Dhuey, M. Volger, Y. Wu, D. Olynick, S. Cabrini, Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices. Nanotechnology, 21 (2010)
57.
go back to reference H. Yoshikawa, J. Taniguchi, G. Tazaki, T. Zento, Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectron. Eng. 112, 273–277 (2013)CrossRef H. Yoshikawa, J. Taniguchi, G. Tazaki, T. Zento, Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectron. Eng. 112, 273–277 (2013)CrossRef
58.
go back to reference R. Inanami, T. Ojima, K. Matsuki, T. Kono, T. Nakasugi, Sub-100 nm pattern formation by roll-to-roll nanoimprint. Altern. Lithogr. Technol. Iv, 8323 (2012) R. Inanami, T. Ojima, K. Matsuki, T. Kono, T. Nakasugi, Sub-100 nm pattern formation by roll-to-roll nanoimprint. Altern. Lithogr. Technol. Iv, 8323 (2012)
59.
go back to reference T. Ruotsalainen, K. Solehmainen, J. Hiitola-Keinanen, J. Hast, M. Kansakoski, H. Gold, et al., Towards roll-to-roll manufacturing: organic thin film transistors based on nanoimprint lithography technique. In: Proceedings of the 8th International Conference on Multi-Material Micro Manufacture (4 m 2011), pp. 325–327 T. Ruotsalainen, K. Solehmainen, J. Hiitola-Keinanen, J. Hast, M. Kansakoski, H. Gold, et al., Towards roll-to-roll manufacturing: organic thin film transistors based on nanoimprint lithography technique. In: Proceedings of the 8th International Conference on Multi-Material Micro Manufacture (4 m 2011), pp. 325–327
60.
go back to reference H. Lan, Y. Ding, H. Liu, Nanoimprint lithography: principles, processes and materials (Nova Science Publishers Inc, New York, 2011) H. Lan, Y. Ding, H. Liu, Nanoimprint lithography: principles, processes and materials (Nova Science Publishers Inc, New York, 2011)
61.
go back to reference W. Zhou, Nanoimprint lithography: an enabling process for nanofabrication (Springer, New York, 2012) W. Zhou, Nanoimprint lithography: an enabling process for nanofabrication (Springer, New York, 2012)
62.
go back to reference H. Kim, D. Kim, C. Lee, J. Kim, Laser interference lithography using spray/spin photoresist development method for consistent periodic nanostructures. Curr. Appl. Phys. 14, 209–214 (2014)CrossRef H. Kim, D. Kim, C. Lee, J. Kim, Laser interference lithography using spray/spin photoresist development method for consistent periodic nanostructures. Curr. Appl. Phys. 14, 209–214 (2014)CrossRef
63.
go back to reference J. de Boor, D.S. Kim, V. Schmidt, Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer. Opt. Lett. 35, 3450–3452 (2010)CrossRef J. de Boor, D.S. Kim, V. Schmidt, Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer. Opt. Lett. 35, 3450–3452 (2010)CrossRef
64.
go back to reference T.M. Bloomstein, M.F. Marchant, S. Deneault, D.E. Hardy, M. Rothschild, 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006)CrossRef T.M. Bloomstein, M.F. Marchant, S. Deneault, D.E. Hardy, M. Rothschild, 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006)CrossRef
65.
go back to reference A. Bagal, C.-H. Chang, Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography. Opt. Lett. 38, 2531–2534 (2013)CrossRef A. Bagal, C.-H. Chang, Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography. Opt. Lett. 38, 2531–2534 (2013)CrossRef
66.
go back to reference J.-H. Jang, C.K. Ullal, T. Gorishnyy, V.V. Tsukruk, E.L. Thomas, Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett. 6, 740–743 (2006)CrossRef J.-H. Jang, C.K. Ullal, T. Gorishnyy, V.V. Tsukruk, E.L. Thomas, Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett. 6, 740–743 (2006)CrossRef
67.
go back to reference H.I. Smith, Low cost nanolithography with nanoaccuracy. Physica E 11, 104–109 (2001)CrossRef H.I. Smith, Low cost nanolithography with nanoaccuracy. Physica E 11, 104–109 (2001)CrossRef
68.
go back to reference C.G. Chen, P.T. Konkola, R.K. Heilmann, C. Joo, M.L. Schattenburg, Nanometer-accurate grating fabrication with scanning beam interference lithography (2002), pp. 126–134 C.G. Chen, P.T. Konkola, R.K. Heilmann, C. Joo, M.L. Schattenburg, Nanometer-accurate grating fabrication with scanning beam interference lithography (2002), pp. 126–134
69.
go back to reference K.H. Ralf, G.C. Carl, T.K. Paul, L.S. Mark, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504 (2004)CrossRef K.H. Ralf, G.C. Carl, T.K. Paul, L.S. Mark, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504 (2004)CrossRef
70.
go back to reference T.B. O’Reilly, H.I. Smith, Linewidth uniformity in Lloyd’s mirror interference lithography systems. J. Vac. Sci. Technol., B 26, 2131–2134 (2008)CrossRef T.B. O’Reilly, H.I. Smith, Linewidth uniformity in Lloyd’s mirror interference lithography systems. J. Vac. Sci. Technol., B 26, 2131–2134 (2008)CrossRef
71.
go back to reference R.K. Heilmann, C.G. Chen, P.T. Konkola, M.L. Schattenburg, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504–S511 (2004)CrossRef R.K. Heilmann, C.G. Chen, P.T. Konkola, M.L. Schattenburg, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504–S511 (2004)CrossRef
72.
go back to reference G. Rasic, J. Schwartz, Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Communications 3, 207–211 (2013)CrossRef G. Rasic, J. Schwartz, Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Communications 3, 207–211 (2013)CrossRef
73.
go back to reference G. Rasic, J. Schwartz, Coercivity reduction in nickel ferrite (NiFe2O4) thin films through surface patterning. Mag. Lett. IEEE 5, 1–4 (2014)CrossRef G. Rasic, J. Schwartz, Coercivity reduction in nickel ferrite (NiFe2O4) thin films through surface patterning. Mag. Lett. IEEE 5, 1–4 (2014)CrossRef
74.
go back to reference G. Rasic, J. Schwartz, On the origin of coercivity reduction in surface patterned magnetic thin films, Physica Status Solidi (a), 212, 449–458 (2015) G. Rasic, J. Schwartz, On the origin of coercivity reduction in surface patterned magnetic thin films, Physica Status Solidi (a), 212, 449–458 (2015)
Metadata
Title
Reducing Losses in Magnetic Thin Films Through Nanoscale Surface Patterning
Authors
Goran Rasic
Branislav Vlahovic
Justin Schwartz
Copyright Year
2017
Publisher
Atlantis Press
DOI
https://doi.org/10.2991/978-94-6239-213-7_4

Premium Partners