Skip to main content
Top
Published in: Rare Metals 5/2022

19-01-2022 | Original Article

Regulation of electronic structure of monolayer MoS2 by pressure

Authors: Qiao-Lu Lin, Zheng-Fang Qian, Xiang-Yu Dai, Yi-Ling Sun, Ren-Heng Wang

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding pressure-regulated electronic properties is crucial for integrating two-dimensional semiconductors into flexible electronic devices and pressure sensors. We thoroughly explored the tunability of the electronic structure of monolayer MoS2 upon the application of perpendicular pressure and shear stress by using first-principles calculations. The band gap increased at low pressures and then decreased as the pressure increased. Variations in the band gap are caused by the combined interaction of the increasing and decreasing trends in the band gap. The increase in the band gap is induced by the enhancement of the p–d orbital interaction at the top of the valence band (TVB). The delocalization of charge and unstable hybridization bonding causes a reduction in the band gap. The band gap under perpendicular pressure modes is closely related to the structural variation. Shear stress can effectively reduce the band gap with minimal change to the crystal structure. The maximum point at the TVB and the minimum point at the bottom of the conduction band are different for all pressure modes, resulting in various anisotropic properties. This study provides a theoretical basis for modulating the electrical and optical properties of monolayer MoS2.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147.CrossRef Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147.CrossRef
[2]
go back to reference Pereira VM, Castro NA, Liang HY, Mahadevan L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys Rev Lett. 2010;105(15):156603. Pereira VM, Castro NA, Liang HY, Mahadevan L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys Rev Lett. 2010;105(15):156603.
[3]
go back to reference Hsu WT, Lu LS, Wang D, Huang JK, Li MY, Chang TR, Chou YC, Juang ZY, Jeng HT, Li LJ, Chang WH. Evidence of indirect gap in monolayer WSe2. Nat Commun. 2017;8(1):929.CrossRef Hsu WT, Lu LS, Wang D, Huang JK, Li MY, Chang TR, Chou YC, Juang ZY, Jeng HT, Li LJ, Chang WH. Evidence of indirect gap in monolayer WSe2. Nat Commun. 2017;8(1):929.CrossRef
[4]
go back to reference He B, Ren YX, Dai TJ, Hou S, Liu XZ. Characterization and performance of graphene–PbSe thin film heterojunction. Rare Met. 2021;40(1):219.CrossRef He B, Ren YX, Dai TJ, Hou S, Liu XZ. Characterization and performance of graphene–PbSe thin film heterojunction. Rare Met. 2021;40(1):219.CrossRef
[5]
go back to reference Hao M, Zeng W, Li YQ, Wang ZC. Three-dimensional graphene and its composite for gas sensors. Rare Met. 2021;40(6):1494.CrossRef Hao M, Zeng W, Li YQ, Wang ZC. Three-dimensional graphene and its composite for gas sensors. Rare Met. 2021;40(6):1494.CrossRef
[6]
go back to reference Li Y, Lu YL, Wu KD, Zhang DZ, Debliquy M, Zhang C. Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Met. 2021;40(6):1477.CrossRef Li Y, Lu YL, Wu KD, Zhang DZ, Debliquy M, Zhang C. Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Met. 2021;40(6):1477.CrossRef
[7]
go back to reference Wei ZY, Hu KM, Sa BS, Wu B. Pressure-induced structure, electronic, thermodynamic and mechanical properties of Ti2AlNb orthorhombic phase by first-principles calculations. Rare Met. 2021;40(10):2964.CrossRef Wei ZY, Hu KM, Sa BS, Wu B. Pressure-induced structure, electronic, thermodynamic and mechanical properties of Ti2AlNb orthorhombic phase by first-principles calculations. Rare Met. 2021;40(10):2964.CrossRef
[8]
go back to reference Rahnamaye AH, A, Nodehi Z, Maleki B, Abareshi A. Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Met. 2019;38(11):1015. Rahnamaye AH, A, Nodehi Z, Maleki B, Abareshi A. Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Met. 2019;38(11):1015.
[9]
go back to reference Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh XJ, Chen X. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv Mater. 2018;30(50):1805468.CrossRef Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh XJ, Chen X. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv Mater. 2018;30(50):1805468.CrossRef
[10]
go back to reference Lv Z, Li W, Yang L, Loh XJ, Chen X. Custom-made electrochemical energy storage devices. ACS Energy Lett. 2019;4(2):606.CrossRef Lv Z, Li W, Yang L, Loh XJ, Chen X. Custom-made electrochemical energy storage devices. ACS Energy Lett. 2019;4(2):606.CrossRef
[11]
go back to reference Miwa JA, Ulstrup S, Sørensen SG, Dendzik M, Čabo AG, Bianchi M, Lauritsen JV, Hofmann P. Electronic structure of epitaxial single-layer MoS2. Phys Rev Lett. 2015;114(4):046802.CrossRef Miwa JA, Ulstrup S, Sørensen SG, Dendzik M, Čabo AG, Bianchi M, Lauritsen JV, Hofmann P. Electronic structure of epitaxial single-layer MoS2. Phys Rev Lett. 2015;114(4):046802.CrossRef
[12]
go back to reference Docherty CJ, Parkinson P, Joyce HJ, Chiu MH, Chen CH, Lee MY, Li L, Herz LM, Johnston MB. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano. 2014;8(11):11147.CrossRef Docherty CJ, Parkinson P, Joyce HJ, Chiu MH, Chen CH, Lee MY, Li L, Herz LM, Johnston MB. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano. 2014;8(11):11147.CrossRef
[13]
go back to reference Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 2012;8(7):966.CrossRef Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 2012;8(7):966.CrossRef
[14]
go back to reference Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105(13):136805.CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105(13):136805.CrossRef
[15]
go back to reference Banerjee S, Richardson W, Coleman J, Chatterjee A. A new three-terminal tunnel device. IEEE Electron Dev Lett. 1987;8(8):347.CrossRef Banerjee S, Richardson W, Coleman J, Chatterjee A. A new three-terminal tunnel device. IEEE Electron Dev Lett. 1987;8(8):347.CrossRef
[16]
go back to reference Wang R, Sun Y, Yang K, Zheng J, Li Y, Qian Z, He Z, Zhong S. One-time sintering process to modify xLi2MnO3 (1–x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J Energ Chem. 2020;50:271.CrossRef Wang R, Sun Y, Yang K, Zheng J, Li Y, Qian Z, He Z, Zhong S. One-time sintering process to modify xLi2MnO3 (1–x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J Energ Chem. 2020;50:271.CrossRef
[17]
go back to reference Farkous M, Bikerouin M, Thuan DV, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen CV, Hieu NV, Bui HD, Hieu NN, Phuc HV. Strain effects on the electronic and optical properties of Van der Waals heterostructure MoS2/WS2: a first-principles study. Physica E Low Dimens Syst Nanostruct. 2020;116:113799.CrossRef Farkous M, Bikerouin M, Thuan DV, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen CV, Hieu NV, Bui HD, Hieu NN, Phuc HV. Strain effects on the electronic and optical properties of Van der Waals heterostructure MoS2/WS2: a first-principles study. Physica E Low Dimens Syst Nanostruct. 2020;116:113799.CrossRef
[18]
go back to reference Deng S, Che S, Debbarma R, Berry V. Strain in a single wrinkle on an MoS2 flake for in-plane realignment of band structure for enhanced photo-response. Nanoscale. 2019;11(2):504.CrossRef Deng S, Che S, Debbarma R, Berry V. Strain in a single wrinkle on an MoS2 flake for in-plane realignment of band structure for enhanced photo-response. Nanoscale. 2019;11(2):504.CrossRef
[19]
go back to reference He X, Li H, Zhu Z, Dai Z, Yang Y, Yang P, Zhang Q, Li P, Schwingenschlogl U, Zhang X. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl Phys Lett. 2016;109(17):173105.CrossRef He X, Li H, Zhu Z, Dai Z, Yang Y, Yang P, Zhang Q, Li P, Schwingenschlogl U, Zhang X. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl Phys Lett. 2016;109(17):173105.CrossRef
[20]
go back to reference Trainer DJ, Zhang Y, Bobba F, Xi X, Hla SW, Iavarone M. The effects of atomic-scale strain relaxation on the electronic properties of monolayer MoS2. ACS Nano. 2019;13(7):8284.CrossRef Trainer DJ, Zhang Y, Bobba F, Xi X, Hla SW, Iavarone M. The effects of atomic-scale strain relaxation on the electronic properties of monolayer MoS2. ACS Nano. 2019;13(7):8284.CrossRef
[21]
go back to reference Chen Y, Deng W, Chen X, Wu Y, Shi J, Zheng J, Chu F, Liu B, An B, You C, Jiao L, Liu X, Zhang Y. Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Res. 2020;14:2314.CrossRef Chen Y, Deng W, Chen X, Wu Y, Shi J, Zheng J, Chu F, Liu B, An B, You C, Jiao L, Liu X, Zhang Y. Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Res. 2020;14:2314.CrossRef
[22]
go back to reference Carrascoso F, Li H, Frisenda R, Castellanos-Gomez A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021;14(6):1698.CrossRef Carrascoso F, Li H, Frisenda R, Castellanos-Gomez A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021;14(6):1698.CrossRef
[23]
go back to reference Lee JH, Jang WS, Han SW, Baik HK. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir. 2014;30(32):9866.CrossRef Lee JH, Jang WS, Han SW, Baik HK. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir. 2014;30(32):9866.CrossRef
[24]
go back to reference Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A, He F, Xu X, Zhou J, Hsieh W-P, Singh AK, Lin JF, Wang Y. Thermal conductivity enhancement in MoS2 under extreme strain. Phys Rev Lett. 2019;122(15):155901.CrossRef Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A, He F, Xu X, Zhou J, Hsieh W-P, Singh AK, Lin JF, Wang Y. Thermal conductivity enhancement in MoS2 under extreme strain. Phys Rev Lett. 2019;122(15):155901.CrossRef
[25]
go back to reference Xu W, Yan S, Qiao W. Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Adv. 2018;8(15):8435.CrossRef Xu W, Yan S, Qiao W. Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Adv. 2018;8(15):8435.CrossRef
[26]
go back to reference Lin Q, Xu N, Li G, Qian Z, Liu H, Wang R. Carrier and vacancy mediated ferrimagnetism in Cu doped rutile TiO2. J Mater Chem C. 2021;9(8):2858.CrossRef Lin Q, Xu N, Li G, Qian Z, Liu H, Wang R. Carrier and vacancy mediated ferrimagnetism in Cu doped rutile TiO2. J Mater Chem C. 2021;9(8):2858.CrossRef
[27]
go back to reference Li T, Galli G. Electronic properties of MoS2 nanoparticles. J Mater Chem C. 2007;111(44):16192. Li T, Galli G. Electronic properties of MoS2 nanoparticles. J Mater Chem C. 2007;111(44):16192.
[28]
go back to reference Scalise E, Houssa M, Pourtois G, Afanas’ev V, Stesmans A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012;5(1):43.CrossRef Scalise E, Houssa M, Pourtois G, Afanas’ev V, Stesmans A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012;5(1):43.CrossRef
[29]
go back to reference Fu L, Wan Y, Tang N, Ding Y, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J, Wu X, Shi SF, Ge W, Dai L, Shen B. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure. Sci Adv. 2017;3(11):e1700162.CrossRef Fu L, Wan Y, Tang N, Ding Y, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J, Wu X, Shi SF, Ge W, Dai L, Shen B. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure. Sci Adv. 2017;3(11):e1700162.CrossRef
[30]
go back to reference Shahriari M, Dezfuli AG, Sabaeian M. Investigation of uniaxial and biaxial strains on the band gap modifications of monolayer MoS2 with tight-binding method. Superlattic Microst. 2019;125:34.CrossRef Shahriari M, Dezfuli AG, Sabaeian M. Investigation of uniaxial and biaxial strains on the band gap modifications of monolayer MoS2 with tight-binding method. Superlattic Microst. 2019;125:34.CrossRef
[31]
go back to reference Guo Y, Li B, Huang Y, Du S, Sun C, Luo H, Liu B, Zhou X, Yang J, Li J, Gu C. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 2020;13(8):2072.CrossRef Guo Y, Li B, Huang Y, Du S, Sun C, Luo H, Liu B, Zhou X, Yang J, Li J, Gu C. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 2020;13(8):2072.CrossRef
[32]
go back to reference Fan X, Chang CH, Zheng WT, Kuo JL, Singh DJ. The electronic properties of single-layer and multilayer MoS2 under high pressure. J Mater Chem C. 2015;119(19):10189. Fan X, Chang CH, Zheng WT, Kuo JL, Singh DJ. The electronic properties of single-layer and multilayer MoS2 under high pressure. J Mater Chem C. 2015;119(19):10189.
[33]
go back to reference Li F, Shen T, Xu L, Hu C, Qi J. Strain Improving the performance of a flexible monolayer MoS2 photodetector. Adv Electron Mater. 2019;5(12):1900803.CrossRef Li F, Shen T, Xu L, Hu C, Qi J. Strain Improving the performance of a flexible monolayer MoS2 photodetector. Adv Electron Mater. 2019;5(12):1900803.CrossRef
[34]
go back to reference Hu Y, Zhang F, Titze M, Deng B, Li H, Cheng GJ. Straining effects in MoS2 monolayer on nanostructured substrates: temperature-dependent photoluminescence and exciton dynamics. Nanoscale. 2018;10(12):5717.CrossRef Hu Y, Zhang F, Titze M, Deng B, Li H, Cheng GJ. Straining effects in MoS2 monolayer on nanostructured substrates: temperature-dependent photoluminescence and exciton dynamics. Nanoscale. 2018;10(12):5717.CrossRef
[35]
go back to reference Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118(18):8207.CrossRef Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118(18):8207.CrossRef
[36]
go back to reference Heyd J, Scuseria GE, Ernzerhof M, Erratum, Hybrid functionals based on a screened Coulomb potential. [J. Chem. Phys. 118, 8207 (2003)], J Chem Phys. 2006; 124(21): 219906. Heyd J, Scuseria GE, Ernzerhof M, Erratum, Hybrid functionals based on a screened Coulomb potential. [J. Chem. Phys. 118, 8207 (2003)], J Chem Phys. 2006; 124(21): 219906.
[37]
go back to reference Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B. 2011;406(11):2254.CrossRef Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B. 2011;406(11):2254.CrossRef
[38]
go back to reference Qiu DY, da Jornada FH, Louie SG. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett. 2013;111(21):216805.CrossRef Qiu DY, da Jornada FH, Louie SG. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett. 2013;111(21):216805.CrossRef
[39]
go back to reference Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.CrossRef Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.CrossRef
[40]
go back to reference Dybała F, Polak MP, Kopaczek J, Scharoch P, Wu K, Tongay S, Kudrawiec R. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions. Sci Rep. 2016;6(1):26663.CrossRef Dybała F, Polak MP, Kopaczek J, Scharoch P, Wu K, Tongay S, Kudrawiec R. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions. Sci Rep. 2016;6(1):26663.CrossRef
[41]
go back to reference Zhong M, Zeng W, Tang H, Wang LX, Liu FS, Tang B, Liu QJ. Band structures, effective masses and exciton binding energies of perovskite polymorphs of CH3NH3PbI3. Sol Energy. 2019;190:617.CrossRef Zhong M, Zeng W, Tang H, Wang LX, Liu FS, Tang B, Liu QJ. Band structures, effective masses and exciton binding energies of perovskite polymorphs of CH3NH3PbI3. Sol Energy. 2019;190:617.CrossRef
[42]
go back to reference Lou P, Lee JY. Origin of structural stability of ScH3 molecular nanowires and their chemical-bonding behavior: correlation effects of the Sc 3d electrons. J Chem Phys. 2019;150(18):184307.CrossRef Lou P, Lee JY. Origin of structural stability of ScH3 molecular nanowires and their chemical-bonding behavior: correlation effects of the Sc 3d electrons. J Chem Phys. 2019;150(18):184307.CrossRef
[43]
go back to reference Miao MS, Hoffmann R. High pressure electrides: a predictive chemical and physical theory. Acc Chem Res. 2014;47(4):1311.CrossRef Miao MS, Hoffmann R. High pressure electrides: a predictive chemical and physical theory. Acc Chem Res. 2014;47(4):1311.CrossRef
[44]
go back to reference Rousseau B, Ashcroft NW. Interstitial electronic localization. Phys Rev Lett. 2008;101(4):046407.CrossRef Rousseau B, Ashcroft NW. Interstitial electronic localization. Phys Rev Lett. 2008;101(4):046407.CrossRef
Metadata
Title
Regulation of electronic structure of monolayer MoS2 by pressure
Authors
Qiao-Lu Lin
Zheng-Fang Qian
Xiang-Yu Dai
Yi-Ling Sun
Ren-Heng Wang
Publication date
19-01-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01888-w

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners