Skip to main content
Top
Published in: Rare Metals 5/2017

22-03-2017

Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3 : towards better electrochemical performances

Authors: Yu Li, Ying Bai, Zhi Yang, Zhao-Hua Wang, Shi Chen, Feng Wu, Chuan Wu

Published in: Rare Metals | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Doping modification of electrode materials is a sought-after strategy to improve their electrochemical performance in the secondary batteries field. Herein, polyanion (BO3)3−-doped Li3V2(PO4)3 cathode materials were successfully synthesized via a wet coordination method. The effects of (BO3)3− doping content on crystal structure, morphology and electrochemical performance were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). All the as-prepared samples have the same monoclinic structure; among them, Li3V2(PO4)2.75(BO3)0.15 sample has relatively uniform and optimized particle size. In addition, this sample has the highest discharge capacity and the best cycling stability, with an initial discharge capacity of 120.4 mAh·g−1, and after 30 cycles at a rate of 0.1C, the discharge capacity still remains 119.3 mAh·g−1. It is confirmed that moderate polyanion (BO3)3− doping can rearrange the electronic structure of the bulk Li3V2(PO4)3, lower the charge transfer resistance and further improve the electrochemical behaviors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef
[2]
go back to reference Li Y, Bai Y, Bi XX, Qian J, Ma L, Tian J, Wu C, Wu F, Lu J, Amine K. An effectively activated hierarchical nano-/microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries. Chem Sus Chem. 2016;9(7):728.CrossRef Li Y, Bai Y, Bi XX, Qian J, Ma L, Tian J, Wu C, Wu F, Lu J, Amine K. An effectively activated hierarchical nano-/microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries. Chem Sus Chem. 2016;9(7):728.CrossRef
[3]
go back to reference Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met. 2016;35(4):309.CrossRef Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met. 2016;35(4):309.CrossRef
[4]
go back to reference Li Y, Bai Y, Wu C, Qian J, Chen GH, Liu L, Wang H, Zhou XZ, Wu F. Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J Mater Chem A. 2016;4(16):5942.CrossRef Li Y, Bai Y, Wu C, Qian J, Chen GH, Liu L, Wang H, Zhou XZ, Wu F. Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J Mater Chem A. 2016;4(16):5942.CrossRef
[5]
go back to reference Ren L, Li XE, Wang FF, Han Y. Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met. 2015;34(10):731.CrossRef Ren L, Li XE, Wang FF, Han Y. Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met. 2015;34(10):731.CrossRef
[6]
go back to reference Wu F, Wang L, Wu C, Bai Y, Wang F. Study on Li1+x V3O8 synthesized by microwave sol-gel route. Mater Chem Phys. 2009;115(2):707.CrossRef Wu F, Wang L, Wu C, Bai Y, Wang F. Study on Li1+x V3O8 synthesized by microwave sol-gel route. Mater Chem Phys. 2009;115(2):707.CrossRef
[7]
go back to reference Wu F, Wang L, Wu C, Bai Y. Structural characterization and electrochemical performance of lithium trivanadate synthesized by microwave sol-gel method. Electrochim Acta. 2009;54(20):4613.CrossRef Wu F, Wang L, Wu C, Bai Y. Structural characterization and electrochemical performance of lithium trivanadate synthesized by microwave sol-gel method. Electrochim Acta. 2009;54(20):4613.CrossRef
[8]
go back to reference Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRef Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRef
[9]
go back to reference Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF. Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces. 2016;8(29):18832.CrossRef Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF. Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces. 2016;8(29):18832.CrossRef
[10]
go back to reference Membreño N, Park K, Goodenough JB, Stevenson KJ. Electrode/electrolyte interface of composite α-Li3V2(PO4)3 cathodes in a nonaqueous electrolyte for lithium ion batteries and the role of the carbon additive. Chem Mater. 2015;27(9):3332.CrossRef Membreño N, Park K, Goodenough JB, Stevenson KJ. Electrode/electrolyte interface of composite α-Li3V2(PO4)3 cathodes in a nonaqueous electrolyte for lithium ion batteries and the role of the carbon additive. Chem Mater. 2015;27(9):3332.CrossRef
[11]
go back to reference Yin SC, Grondey H, Strobel P, Anne M, Nazar LF. Electrochemical property: structure relationships in monoclinic Li3-y V2(PO4)3. J Am Chem Soc. 2003;125(34):10402.CrossRef Yin SC, Grondey H, Strobel P, Anne M, Nazar LF. Electrochemical property: structure relationships in monoclinic Li3-y V2(PO4)3. J Am Chem Soc. 2003;125(34):10402.CrossRef
[12]
go back to reference Rui X, Yan Q, Skyllas-Kazacos M, Lim TM. Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources. 2014;258(21):19.CrossRef Rui X, Yan Q, Skyllas-Kazacos M, Lim TM. Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources. 2014;258(21):19.CrossRef
[13]
go back to reference Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci. 2011;4(9):3223.CrossRef Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci. 2011;4(9):3223.CrossRef
[14]
go back to reference Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1(2):123.CrossRef Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1(2):123.CrossRef
[15]
go back to reference Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem Mater. 2000;12(11):3240.CrossRef Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem Mater. 2000;12(11):3240.CrossRef
[16]
go back to reference Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid State Lett. 2002;5(7):A149.CrossRef Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid State Lett. 2002;5(7):A149.CrossRef
[17]
go back to reference Zhong SK, Wang Y, Wu L, Liu JQ. Synthesis and electrochemical properties of Ti-doped Li3V2(PO4)3/C cathode materials. Rare Met. 2014;34(8):586.CrossRef Zhong SK, Wang Y, Wu L, Liu JQ. Synthesis and electrochemical properties of Ti-doped Li3V2(PO4)3/C cathode materials. Rare Met. 2014;34(8):586.CrossRef
[18]
go back to reference Duan W, Hu Z, Zhang K, Cheng F, Tao Z, Chen J. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale. 2013;5(14):6485.CrossRef Duan W, Hu Z, Zhang K, Cheng F, Tao Z, Chen J. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale. 2013;5(14):6485.CrossRef
[19]
go back to reference Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta. 2009;54(24):5844.CrossRef Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta. 2009;54(24):5844.CrossRef
[20]
go back to reference Ren M, Zhou Z, Li Y, Gao XP, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Power Sources. 2006;162(2):1357.CrossRef Ren M, Zhou Z, Li Y, Gao XP, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Power Sources. 2006;162(2):1357.CrossRef
[21]
go back to reference Dai C, Chen Z, Jin H, Hu X. Synthesis and performance of Li3(V1−x Mg x )2(PO4)3 cathode materials. J Power Sources. 2010;195(17):5775.CrossRef Dai C, Chen Z, Jin H, Hu X. Synthesis and performance of Li3(V1−x Mg x )2(PO4)3 cathode materials. J Power Sources. 2010;195(17):5775.CrossRef
[22]
go back to reference Son JN, Kim GJ, Kim MC, Kim SH, Aravindan V, Lee YG, Lee YS. Carbon coated NASICON type Li3V2-x M x (PO4)3 (M = Mn, Fe and Al) materials with enhanced cyclability for Li-ion batteries. J Electrochem Soc. 2012;160(1):A87.CrossRef Son JN, Kim GJ, Kim MC, Kim SH, Aravindan V, Lee YG, Lee YS. Carbon coated NASICON type Li3V2-x M x (PO4)3 (M = Mn, Fe and Al) materials with enhanced cyclability for Li-ion batteries. J Electrochem Soc. 2012;160(1):A87.CrossRef
[23]
go back to reference Kuang Q, Zhao Y. Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries. J Power Sources. 2012;216(11):33.CrossRef Kuang Q, Zhao Y. Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries. J Power Sources. 2012;216(11):33.CrossRef
[24]
go back to reference Kim J, Yoo JK, Jung YS, Kang K. Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv Energy Mater. 2013;3(8):1004.CrossRef Kim J, Yoo JK, Jung YS, Kang K. Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv Energy Mater. 2013;3(8):1004.CrossRef
[25]
go back to reference Wang S, Zhang Z, Jiang Z, Deb A, Yang L, Hirano SI. Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources. 2014;253(253):294.CrossRef Wang S, Zhang Z, Jiang Z, Deb A, Yang L, Hirano SI. Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources. 2014;253(253):294.CrossRef
[26]
go back to reference Li D, Tian M, Xie R, Li Q, Fan X, Gou L, Zhao P, Ma SL, Shi YX, Yong HTH. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale. 2014;6(6):3302.CrossRef Li D, Tian M, Xie R, Li Q, Fan X, Gou L, Zhao P, Ma SL, Shi YX, Yong HTH. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale. 2014;6(6):3302.CrossRef
[27]
go back to reference Zhong S, Liu L, Liu J, Wang J, Yang J. High-rate characteristic of F-substitution cathode materials for Li–ion batteries. Solid State Commun. 2009;149(39–40):1679. Zhong S, Liu L, Liu J, Wang J, Yang J. High-rate characteristic of F-substitution cathode materials for Li–ion batteries. Solid State Commun. 2009;149(39–40):1679.
[28]
go back to reference Yan J, Yuan W, Tang ZY, Xie H, Mao WF, Ma L. Synthesis and electrochemical performance of Li3V2(PO4)3−x Cl x /C cathode materials for lithium-ion batteries. J Power Sources. 2012;209(7):251.CrossRef Yan J, Yuan W, Tang ZY, Xie H, Mao WF, Ma L. Synthesis and electrochemical performance of Li3V2(PO4)3−x Cl x /C cathode materials for lithium-ion batteries. J Power Sources. 2012;209(7):251.CrossRef
[29]
go back to reference Wang L, Li X, Jiang X, Pan F, Wu F. Wet coordination method to prepare carbon-coated Li3V2(PO4)3 cathode material for lithium ion batteries. Solid State Sci. 2010;12(7):1248.CrossRef Wang L, Li X, Jiang X, Pan F, Wu F. Wet coordination method to prepare carbon-coated Li3V2(PO4)3 cathode material for lithium ion batteries. Solid State Sci. 2010;12(7):1248.CrossRef
[30]
go back to reference Wu F, Wang F, Wu C, Bai Y. Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. J Alloys Compd. 2012;513(3):236.CrossRef Wu F, Wang F, Wu C, Bai Y. Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. J Alloys Compd. 2012;513(3):236.CrossRef
Metadata
Title
Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3− : towards better electrochemical performances
Authors
Yu Li
Ying Bai
Zhi Yang
Zhao-Hua Wang
Shi Chen
Feng Wu
Chuan Wu
Publication date
22-03-2017
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0892-y

Other articles of this Issue 5/2017

Rare Metals 5/2017 Go to the issue

Premium Partners