Skip to main content
Top
Published in: Rare Metals 5/2017

29-04-2017

Recent advances in cathode materials for Li–S battery: structure and performance

Authors: Chao Li, Zhen-Bo Wang, Qian Wang, Da-Ming Gu

Published in: Rare Metals | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Li–S battery is one of the most promising candidates for next-generation energy storage technology. However, the rapid capacity fading and low-energy-density limit its large-scale applications. Scholars invest a lot of effort to introduce new materials. A neglected problem is that reasonable structure is as important as new material. In this review, four kinds of cathode structures were analyzed through morphology and electrochemical properties. The relationship between structures and properties was elaborated through reaction mechanism. The advantages and disadvantages of each structure were discussed. We hope the summary and discussion provide inspiration for structure design in Li–S battery cathode materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater. 2009;21(2526):2710.CrossRef Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater. 2009;21(2526):2710.CrossRef
[2]
go back to reference Wang H, Cui LF, Yang Y, Sanchez CH, Robinson JT, Liang Y, Cui Y, Dai H. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef Wang H, Cui LF, Yang Y, Sanchez CH, Robinson JT, Liang Y, Cui Y, Dai H. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef
[3]
go back to reference Sheem K, Lee YH, Lim HS. High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. J Power Sources. 2006;158(2):1425.CrossRef Sheem K, Lee YH, Lim HS. High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. J Power Sources. 2006;158(2):1425.CrossRef
[4]
go back to reference Nishi Y. Lithium ion secondary batteries; past 10 years and the future. J Power Sources. 2001;100(1):101.CrossRef Nishi Y. Lithium ion secondary batteries; past 10 years and the future. J Power Sources. 2001;100(1):101.CrossRef
[5]
go back to reference Wang G, Chen Y, Konstantinov K, Lindsay M, Liu H, Dou S. Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources. 2002;109(1):142.CrossRef Wang G, Chen Y, Konstantinov K, Lindsay M, Liu H, Dou S. Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources. 2002;109(1):142.CrossRef
[6]
go back to reference Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11(7):2949.CrossRef Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11(7):2949.CrossRef
[7]
go back to reference Masarapu C, Subramanian V, Zhu H, Wei B. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv Func Mater. 2009;19(7):101.CrossRef Masarapu C, Subramanian V, Zhu H, Wei B. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv Func Mater. 2009;19(7):101.CrossRef
[8]
go back to reference Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien C. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.CrossRef Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien C. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.CrossRef
[9]
go back to reference Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4:1481.CrossRef Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4:1481.CrossRef
[10]
go back to reference Liang C, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater. 2009;21(19):4724.CrossRef Liang C, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater. 2009;21(19):4724.CrossRef
[11]
go back to reference Herbert D, Ulam J. Electric dry cells and storage batteries.US Patent, 3043896. 1962. Herbert D, Ulam J. Electric dry cells and storage batteries.US Patent, 3043896. 1962.
[12]
go back to reference Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater. 2011;23(47):5641.CrossRef Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater. 2011;23(47):5641.CrossRef
[13]
go back to reference Ma G, Wen Z, Jin J, Lu Y, Wu X, Liu C, Chen C. Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. RSC Adv. 2014;4(41):21612.CrossRef Ma G, Wen Z, Jin J, Lu Y, Wu X, Liu C, Chen C. Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. RSC Adv. 2014;4(41):21612.CrossRef
[14]
go back to reference Kumaresan K, Mikhaylik Y, White RE. A mathematical model for a lithium–sulfur cell. J Electrochem Soc. 2008;155(8):576.CrossRef Kumaresan K, Mikhaylik Y, White RE. A mathematical model for a lithium–sulfur cell. J Electrochem Soc. 2008;155(8):576.CrossRef
[15]
go back to reference Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources. 1983;9(3):281.CrossRef Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources. 1983;9(3):281.CrossRef
[16]
go back to reference Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle LR, Lu GQM. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382. Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle LR, Lu GQM. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382.
[17]
go back to reference Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011;11(10):4462.CrossRef Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011;11(10):4462.CrossRef
[18]
go back to reference Evers S, Nazar LF. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem Commun. 2012;48(9):1233.CrossRef Evers S, Nazar LF. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem Commun. 2012;48(9):1233.CrossRef
[19]
go back to reference Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources. 2000;89(2):219.CrossRef Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources. 2000;89(2):219.CrossRef
[20]
go back to reference Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem. 2011;123(26):6026.CrossRef Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem. 2011;123(26):6026.CrossRef
[21]
go back to reference Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.CrossRef Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.CrossRef
[22]
go back to reference Ryu H, Ahn H, Kim K, Ahn J, Cho K, Nam T. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim Acta. 2006;52(4):1563.CrossRef Ryu H, Ahn H, Kim K, Ahn J, Cho K, Nam T. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim Acta. 2006;52(4):1563.CrossRef
[23]
go back to reference Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J Electrochem Soc. 2004;151(12):A2067.CrossRef Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J Electrochem Soc. 2004;151(12):A2067.CrossRef
[24]
go back to reference Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chem Commun. 2014;50(10):1202.CrossRef Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chem Commun. 2014;50(10):1202.CrossRef
[25]
go back to reference Li J, Qin F, Zhang L, Zhang K, Li Q, Lai Y, Zhang Z, Fang J. Mesoporous carbon from biomass: one-pot synthesis and application for Li–S batteries. J Mater Chem A. 2014;2(34):13916.CrossRef Li J, Qin F, Zhang L, Zhang K, Li Q, Lai Y, Zhang Z, Fang J. Mesoporous carbon from biomass: one-pot synthesis and application for Li–S batteries. J Mater Chem A. 2014;2(34):13916.CrossRef
[26]
go back to reference Zhang Y, Zhao Y, Bakenov Z, Tuiyebayeva M, Konarov A, Chen P. Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochimica Acta. 2014;143(2):49.CrossRef Zhang Y, Zhao Y, Bakenov Z, Tuiyebayeva M, Konarov A, Chen P. Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochimica Acta. 2014;143(2):49.CrossRef
[27]
go back to reference Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources. 2011;196(7):3655.CrossRef Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources. 2011;196(7):3655.CrossRef
[28]
go back to reference Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. Journal of Physical Chemistry C. 2011;115(13):6057.CrossRef Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. Journal of Physical Chemistry C. 2011;115(13):6057.CrossRef
[29]
go back to reference Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011;11(10):4288.CrossRef Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011;11(10):4288.CrossRef
[30]
go back to reference Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun. 2012;48(34):4097.CrossRef Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun. 2012;48(34):4097.CrossRef
[31]
go back to reference Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787.CrossRef Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787.CrossRef
[32]
go back to reference Yang Y, Liu J, Wan M. Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology. 2002;13(6):771.CrossRef Yang Y, Liu J, Wan M. Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology. 2002;13(6):771.CrossRef
[33]
go back to reference Wen Z, Wang Q, Zhang Q, Li J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Func Mater. 2007;17(15):2772.CrossRef Wen Z, Wang Q, Zhang Q, Li J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv Func Mater. 2007;17(15):2772.CrossRef
[34]
go back to reference Ma XZ, Jin B, Wang HY, Hou JZ, Bin ZX, Wang HH, Xin PM. S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem. 2015;736:127.CrossRef Ma XZ, Jin B, Wang HY, Hou JZ, Bin ZX, Wang HH, Xin PM. S–TiO2 composite cathode materials for lithium/sulfur batteries. J Electroanal Chem. 2015;736:127.CrossRef
[35]
go back to reference Rümmeli MH, Schäffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk RJ, Rellinghaus B, Büchner B, Pichler T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc. 2007;129(51):15772.CrossRef Rümmeli MH, Schäffel F, Kramberger C, Gemming T, Bachmatiuk A, Kalenczuk RJ, Rellinghaus B, Büchner B, Pichler T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc. 2007;129(51):15772.CrossRef
[36]
go back to reference Peng Y, Liu C, Pan C, Qiu L, Wang S, Yan F. PPyNT-Im-PtAu alloy nanoparticle hybrids with tunable electroactivity and enhanced durability for methanol electrooxidation and oxygen reduction reaction. ACS Appl Mater Interfaces. 2013;5(7):2752.CrossRef Peng Y, Liu C, Pan C, Qiu L, Wang S, Yan F. PPyNT-Im-PtAu alloy nanoparticle hybrids with tunable electroactivity and enhanced durability for methanol electrooxidation and oxygen reduction reaction. ACS Appl Mater Interfaces. 2013;5(7):2752.CrossRef
[37]
go back to reference Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett. 2003;370(5):820.CrossRef Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett. 2003;370(5):820.CrossRef
[38]
go back to reference Zhang Y, Zhang X, Zhang H, Zhao Z, Li F, Liu C, Cheng H. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta. 2006;51(23):4994.CrossRef Zhang Y, Zhang X, Zhang H, Zhao Z, Li F, Liu C, Cheng H. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta. 2006;51(23):4994.CrossRef
[39]
go back to reference Xu Y, Ye X, Yang L, He P, Fang Y. Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis. 2006;18(15):1471.CrossRef Xu Y, Ye X, Yang L, He P, Fang Y. Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis. 2006;18(15):1471.CrossRef
[40]
go back to reference Kumar A, Maschmann MR, Hodson SL, Baur J, Fisher TS. Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon. 2015;84:236.CrossRef Kumar A, Maschmann MR, Hodson SL, Baur J, Fisher TS. Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon. 2015;84:236.CrossRef
[41]
go back to reference Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999;283(5401):512.CrossRef Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999;283(5401):512.CrossRef
[42]
go back to reference Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater. 2013;25(45):6547.CrossRef Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater. 2013;25(45):6547.CrossRef
[43]
go back to reference Zhou G, Wang DW, Li F, Hou PX, Yin L, Liu C, Lu GQM, Gentle IR, Cheng HM. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci. 2012;5(10):8901.CrossRef Zhou G, Wang DW, Li F, Hou PX, Yin L, Liu C, Lu GQM, Gentle IR, Cheng HM. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci. 2012;5(10):8901.CrossRef
[44]
go back to reference Li Z, Zhang J, Lou XW. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(44):12886.CrossRef Li Z, Zhang J, Lou XW. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(44):12886.CrossRef
[45]
go back to reference Zhao Y, Wu W, Li J, Xu Z, Guan L. Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv Mater. 2014;26(30):5113.CrossRef Zhao Y, Wu W, Li J, Xu Z, Guan L. Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv Mater. 2014;26(30):5113.CrossRef
[46]
go back to reference Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.CrossRef Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.CrossRef
[47]
go back to reference Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources. 2011;196(16):6951.CrossRef Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources. 2011;196(16):6951.CrossRef
[48]
go back to reference Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.CrossRef Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.CrossRef
[49]
go back to reference Zhao Y, Zhu W, Chen GZ, Cairns EJ. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J Power Sources. 2016;327:447.CrossRef Zhao Y, Zhu W, Chen GZ, Cairns EJ. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J Power Sources. 2016;327:447.CrossRef
[50]
go back to reference Jang J, Oh JH. Facile fabrication of photochromic dye-conducting polymer core–shell nanomaterials and their photoluminescence. Adv Mater. 2003;15(12):977.CrossRef Jang J, Oh JH. Facile fabrication of photochromic dye-conducting polymer core–shell nanomaterials and their photoluminescence. Adv Mater. 2003;15(12):977.CrossRef
[51]
go back to reference Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI. Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc. 2005;127(2):544.CrossRef Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI. Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc. 2005;127(2):544.CrossRef
[52]
go back to reference Zhong CJ, Maye MM. Core–shell assembled nanoparticles as catalysts. Adv Mater. 2001;13(19):1507.CrossRef Zhong CJ, Maye MM. Core–shell assembled nanoparticles as catalysts. Adv Mater. 2001;13(19):1507.CrossRef
[53]
go back to reference Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29(10):1509.CrossRef Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29(10):1509.CrossRef
[54]
go back to reference Fu Y, Manthiram A. Core–shell structured sulfur-polypyrrole composite cathodes for lithium–sulfur batteries. RSC Adv. 2012;2(14):5927.CrossRef Fu Y, Manthiram A. Core–shell structured sulfur-polypyrrole composite cathodes for lithium–sulfur batteries. RSC Adv. 2012;2(14):5927.CrossRef
[55]
go back to reference Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644.CrossRef Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644.CrossRef
[56]
go back to reference Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef
[57]
go back to reference Wang C, Chen JJ, Shi YN, Zheng MS, Dong QF. Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim Acta. 2010;55(23):7010.CrossRef Wang C, Chen JJ, Shi YN, Zheng MS, Dong QF. Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim Acta. 2010;55(23):7010.CrossRef
[58]
go back to reference Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3. Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3.
[59]
go back to reference Hirakawa T, Kamat PV. Charge separation and catalytic activity of Ag@ TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc. 2005;127(11):3928.CrossRef Hirakawa T, Kamat PV. Charge separation and catalytic activity of Ag@ TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc. 2005;127(11):3928.CrossRef
[60]
go back to reference Su L, Zhou Z, Ren M. Core double-shell Si@ SiO2@ C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.CrossRef Su L, Zhou Z, Ren M. Core double-shell Si@ SiO2@ C nanocomposites as anode materials for Li-ion batteries. Chem Commun. 2010;46(15):2590.CrossRef
[61]
go back to reference Xiao M, Huang M, Zeng S, Han D, Wang S, Sun L, Meng Y. Sulfur@ graphene oxide core–shell particles as a rechargeable lithium–sulfur battery cathode material with high cycling stability and capacity. RSC Adv. 2013;3(15):4914.CrossRef Xiao M, Huang M, Zeng S, Han D, Wang S, Sun L, Meng Y. Sulfur@ graphene oxide core–shell particles as a rechargeable lithium–sulfur battery cathode material with high cycling stability and capacity. RSC Adv. 2013;3(15):4914.CrossRef
[62]
go back to reference Wang D, Yu Y, Zhou W, Chen H, DiSalvo FJ, Muller DA, Abruña HD. Infiltrating sulfur in hierarchical architecture MWCNT@ meso C core–shell nanocomposites for lithium–sulfur batteries. Phys Chem Chem Phys. 2013;15(23):9051.CrossRef Wang D, Yu Y, Zhou W, Chen H, DiSalvo FJ, Muller DA, Abruña HD. Infiltrating sulfur in hierarchical architecture MWCNT@ meso C core–shell nanocomposites for lithium–sulfur batteries. Phys Chem Chem Phys. 2013;15(23):9051.CrossRef
[63]
go back to reference Zhang K, Zhao Q, Tao Z, Chen J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li–S batteries with high performance. Nano Res. 2013;6(1):38.CrossRef Zhang K, Zhao Q, Tao Z, Chen J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li–S batteries with high performance. Nano Res. 2013;6(1):38.CrossRef
[64]
go back to reference Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem. 2012;124(38):9730.CrossRef Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem. 2012;124(38):9730.CrossRef
[65]
go back to reference Cao B, Li D, Hou B, Mo Y, Yin L, Chen Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(41):27795.CrossRef Cao B, Li D, Hou B, Mo Y, Yin L, Chen Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(41):27795.CrossRef
[66]
go back to reference Wang ZS, Li FY, Huang CH, Wang L, Wei M, Jin LP, Li NQ. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J Phys Chem B. 2000;104(41):9676.CrossRef Wang ZS, Li FY, Huang CH, Wang L, Wei M, Jin LP, Li NQ. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J Phys Chem B. 2000;104(41):9676.CrossRef
[67]
go back to reference Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C. 2010;114(30):13118.CrossRef Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C. 2010;114(30):13118.CrossRef
[68]
go back to reference Kim H, Kim MG, Shin TJ, Shin HJ, Cho J. TiO2@ Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochem Commun. 2008;10(11):1669.CrossRef Kim H, Kim MG, Shin TJ, Shin HJ, Cho J. TiO2@ Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochem Commun. 2008;10(11):1669.CrossRef
[69]
go back to reference Li J, Ding B, Xu G, Hou L, Zhang X, Yuan C. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li–S batteries. Nanoscale. 2013;5(13):5743.CrossRef Li J, Ding B, Xu G, Hou L, Zhang X, Yuan C. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li–S batteries. Nanoscale. 2013;5(13):5743.CrossRef
[70]
go back to reference Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun. 2013;4:1331.CrossRef Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun. 2013;4:1331.CrossRef
[71]
go back to reference Jang J, Lim B. Facile fabrication of inorganic-polymer core–shell nanostructures by a one-step vapor deposition polymerization. Angew Chem. 2003;115(45):5758.CrossRef Jang J, Lim B. Facile fabrication of inorganic-polymer core–shell nanostructures by a one-step vapor deposition polymerization. Angew Chem. 2003;115(45):5758.CrossRef
[72]
go back to reference Dong Z, Zhang J, Zhao X, Tu J, Su Q, Du G. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Adv. 2013;3(47):24914.CrossRef Dong Z, Zhang J, Zhao X, Tu J, Su Q, Du G. Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Adv. 2013;3(47):24914.CrossRef
[73]
go back to reference Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3. Chen H, Dong W, Ge J, Wang C, Wu X, Lu W, Chen L. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 1910;2013:3.
[74]
go back to reference Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef Li GC, Li GR, Ye SH, Gao XP. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater. 2012;2(10):1238.CrossRef
[75]
go back to reference Liu G, Li X, Ganesan P, Popov BN. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B. 2009;93(1):156.CrossRef Liu G, Li X, Ganesan P, Popov BN. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B. 2009;93(1):156.CrossRef
[76]
go back to reference Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.CrossRef Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.CrossRef
[77]
go back to reference Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.CrossRef Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.CrossRef
[78]
go back to reference Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature. 2000;404(6781):982.CrossRef Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature. 2000;404(6781):982.CrossRef
[79]
go back to reference Balgis R, Ogi T, Arif AF, Anilkumar GM, Mori T, Okuyama K. Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon. 2015;84:281.CrossRef Balgis R, Ogi T, Arif AF, Anilkumar GM, Mori T, Okuyama K. Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon. 2015;84:281.CrossRef
[80]
go back to reference Mascotto S, Kuzmicz D, Wallacher D, Siebenbürger M, Clemens D, Risse S, Yuan J, Antonietti M, Ballauff M. Poly (ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon. 2015;82:425.CrossRef Mascotto S, Kuzmicz D, Wallacher D, Siebenbürger M, Clemens D, Risse S, Yuan J, Antonietti M, Ballauff M. Poly (ionic liquid)-derived nanoporous carbon analyzed by combination of gas physisorption and small-angle neutron scattering. Carbon. 2015;82:425.CrossRef
[81]
go back to reference Otake Y, Jenkins RG. Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon. 1993;31(1):109.CrossRef Otake Y, Jenkins RG. Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon. 1993;31(1):109.CrossRef
[82]
go back to reference Liu R, Wan L, Liu S, Pan L, Wu D, Zhao D. Supercapacitors: an interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Func Mater. 2015;25(4):526.CrossRef Liu R, Wan L, Liu S, Pan L, Wu D, Zhao D. Supercapacitors: an interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Func Mater. 2015;25(4):526.CrossRef
[83]
go back to reference Ding N, Chen SF, Geng DS, Chien SW, An T, Hor T, Liu ZL, Yu SH, Zong Y. Tellurium@ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium–tellurium batteries. Adv Energy Mater. 2015;5(8):14019991.CrossRef Ding N, Chen SF, Geng DS, Chien SW, An T, Hor T, Liu ZL, Yu SH, Zong Y. Tellurium@ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium–tellurium batteries. Adv Energy Mater. 2015;5(8):14019991.CrossRef
[84]
go back to reference Liang C, Hong K, Guiochon GA, Mays JW, Dai S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed. 2004;43(43):5785.CrossRef Liang C, Hong K, Guiochon GA, Mays JW, Dai S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed. 2004;43(43):5785.CrossRef
[85]
go back to reference Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon. 2005;43(6):1293.CrossRef Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon. 2005;43(6):1293.CrossRef
[86]
go back to reference Coasne B, Jain SK, Naamar L, Gubbins KE. Freezing of argon in ordered and disordered porous carbon. Phys Rev B. 2007;76(8):085416.CrossRef Coasne B, Jain SK, Naamar L, Gubbins KE. Freezing of argon in ordered and disordered porous carbon. Phys Rev B. 2007;76(8):085416.CrossRef
[87]
go back to reference Zhao C, Wang W, Yu Z, Zhang H, Wang A, Yang Y. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J Mater Chem. 2010;20(5):976.CrossRef Zhao C, Wang W, Yu Z, Zhang H, Wang A, Yang Y. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J Mater Chem. 2010;20(5):976.CrossRef
[88]
go back to reference Shi ZG, Feng YQ, Xu L, Da SL, Zhang M. A template method to control the shape and porosity of carbon materials. Carbon. 2004;42(8):1677.CrossRef Shi ZG, Feng YQ, Xu L, Da SL, Zhang M. A template method to control the shape and porosity of carbon materials. Carbon. 2004;42(8):1677.CrossRef
[89]
go back to reference Liu B, Shioyama H, Akita T, Xu Q. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc. 2008;130(16):5390.CrossRef Liu B, Shioyama H, Akita T, Xu Q. Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc. 2008;130(16):5390.CrossRef
[90]
go back to reference Lu Y. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem Int Ed. 2006;45(46):7664.CrossRef Lu Y. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem Int Ed. 2006;45(46):7664.CrossRef
[91]
go back to reference Che S, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O. Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): sBA-15 silica and CMK-5 carbon. Angew Chem Int Ed. 2003;42(19):2182.CrossRef Che S, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O. Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): sBA-15 silica and CMK-5 carbon. Angew Chem Int Ed. 2003;42(19):2182.CrossRef
[92]
go back to reference Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18(16):2073.CrossRef Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18(16):2073.CrossRef
[93]
go back to reference Vinu A, Streb C, Murugesan V, Hartmann M. Adsorption of cytochrome c on new mesoporous carbon molecular sieves. J Phys Chem B. 2003;107(33):8297.CrossRef Vinu A, Streb C, Murugesan V, Hartmann M. Adsorption of cytochrome c on new mesoporous carbon molecular sieves. J Phys Chem B. 2003;107(33):8297.CrossRef
[94]
go back to reference Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef
[95]
go back to reference Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem. 2011;21(41):16603.CrossRef Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem. 2011;21(41):16603.CrossRef
[96]
go back to reference Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl Mater Interfaces. 2013;5(12):5630.CrossRef Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl Mater Interfaces. 2013;5(12):5630.CrossRef
[97]
go back to reference Sun XG, Wang X, Mayes RT, Dai S. Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. Chemsuschem. 2012;5(10):2079.CrossRef Sun XG, Wang X, Mayes RT, Dai S. Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. Chemsuschem. 2012;5(10):2079.CrossRef
[98]
go back to reference Xu H, Deng Y, Zhao Z, Xu H, Qin X, Chen G. The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres. Chem Commun. 2014;50(72):10468.CrossRef Xu H, Deng Y, Zhao Z, Xu H, Qin X, Chen G. The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres. Chem Commun. 2014;50(72):10468.CrossRef
[99]
go back to reference Jia L, Wu T, Lu J, Ma L, Zhu W, Qiu X. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mater Interfaces. 2016;8(44):30248.CrossRef Jia L, Wu T, Lu J, Ma L, Zhu W, Qiu X. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl Mater Interfaces. 2016;8(44):30248.CrossRef
[100]
go back to reference Zheng S, Yi F, Li Z, Zhu Y, Xu Y, Luo C, Yang J, Wang C. Copper-stabilized sulfur-microporous carbon cathodes for Li–S batteries. Adv Func Mater. 2014;24(26):4156.CrossRef Zheng S, Yi F, Li Z, Zhu Y, Xu Y, Luo C, Yang J, Wang C. Copper-stabilized sulfur-microporous carbon cathodes for Li–S batteries. Adv Func Mater. 2014;24(26):4156.CrossRef
[101]
go back to reference Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv Mater. 2014;26(35):6074.CrossRef Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv Mater. 2014;26(35):6074.CrossRef
[102]
go back to reference Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci. 2013;6(8):2497.CrossRef Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci. 2013;6(8):2497.CrossRef
[103]
go back to reference He G, Ji X, Nazar L. High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ Sci. 2011;4(8):2878.CrossRef He G, Ji X, Nazar L. High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ Sci. 2011;4(8):2878.CrossRef
[104]
go back to reference Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM, Gentle IR. A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys. 2012;14(24):8703.CrossRef Wang DW, Zhou G, Li F, Wu KH, Lu GQ, Cheng HM, Gentle IR. A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys. 2012;14(24):8703.CrossRef
[105]
go back to reference Chung S-H, Manthiram A. Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochem Commun. 2014;38:91.CrossRef Chung S-H, Manthiram A. Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochem Commun. 2014;38:91.CrossRef
[106]
go back to reference Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park M-S, Choi JW. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014;14(8):4418.CrossRef Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park M-S, Choi JW. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014;14(8):4418.CrossRef
[107]
go back to reference Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon. 2016;101:272.CrossRef Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon. 2016;101:272.CrossRef
[108]
go back to reference Kang WM, Ma XM, Zhao YX, Zhao HH, Cheng BW, Liu YB. Research progress of separator materials for lithium–sulfur batteries. Acta Polym Sin. 2015;11:1258. Kang WM, Ma XM, Zhao YX, Zhao HH, Cheng BW, Liu YB. Research progress of separator materials for lithium–sulfur batteries. Acta Polym Sin. 2015;11:1258.
[109]
go back to reference Ding K, Liu Q, Bu Y, Meng K, Wang W, Yuan D, Wang Y. High surface area porous polymer frameworks: potential host material for lithium–sulfur batteries. J Alloy Compd. 2016;657:626.CrossRef Ding K, Liu Q, Bu Y, Meng K, Wang W, Yuan D, Wang Y. High surface area porous polymer frameworks: potential host material for lithium–sulfur batteries. J Alloy Compd. 2016;657:626.CrossRef
[110]
go back to reference Tiemann M. Porous metal oxides as gas sensors. Chem A Eur J. 2007;13(30):8376.CrossRef Tiemann M. Porous metal oxides as gas sensors. Chem A Eur J. 2007;13(30):8376.CrossRef
[111]
go back to reference Thakuria H, Borah BM, Das G. Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—a comparative study. J Mol Catal A Chem. 2007;274(1):1.CrossRef Thakuria H, Borah BM, Das G. Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—a comparative study. J Mol Catal A Chem. 2007;274(1):1.CrossRef
[112]
go back to reference Wang S, Yang Z, Zhang H, Tan H, Yu J, Wu J. Mesoporous β-MnO2/sulfur composite as cathode material for Li–S batteries. Electrochim Acta. 2013;106:307.CrossRef Wang S, Yang Z, Zhang H, Tan H, Yu J, Wu J. Mesoporous β-MnO2/sulfur composite as cathode material for Li–S batteries. Electrochim Acta. 2013;106:307.CrossRef
[113]
go back to reference Zhecheva E, Stoyanova R. Stabilization of the layered crystal structure of LiNiO2 by co-substitution. Solid State Ionics. 1993;66(1):143.CrossRef Zhecheva E, Stoyanova R. Stabilization of the layered crystal structure of LiNiO2 by co-substitution. Solid State Ionics. 1993;66(1):143.CrossRef
[114]
go back to reference Lu Z, MacNeil D, Dahn J. Layered cathode materials Li [Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.CrossRef Lu Z, MacNeil D, Dahn J. Layered cathode materials Li [Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.CrossRef
[115]
go back to reference Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li [Ni0.17 Li 0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.CrossRef Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li [Ni0.17 Li 0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.CrossRef
[116]
go back to reference Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S. “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources. 2010;195(15):4628.CrossRef Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S. “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources. 2010;195(15):4628.CrossRef
[117]
go back to reference Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater. 2010;22(18):5306.CrossRef Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater. 2010;22(18):5306.CrossRef
[118]
go back to reference Lu S, Chen Y, Wu X, Wang Z, Li Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep. 2014;4:4629.CrossRef Lu S, Chen Y, Wu X, Wang Z, Li Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci Rep. 2014;4:4629.CrossRef
[119]
go back to reference Yin L, Wang J, Lin F, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ Sci. 2012;5(5):6966.CrossRef Yin L, Wang J, Lin F, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ Sci. 2012;5(5):6966.CrossRef
[120]
go back to reference Zhang C, Lv W, Zhang W, Zheng X, Wu MB, Wei W, Tao Y, Li Z, Yang QH. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater. 2014;4(7):1301565.CrossRef Zhang C, Lv W, Zhang W, Zheng X, Wu MB, Wei W, Tao Y, Li Z, Yang QH. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater. 2014;4(7):1301565.CrossRef
[121]
go back to reference Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen S, Tong Y, Li Y. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale. 2013;5(21):10283.CrossRef Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen S, Tong Y, Li Y. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale. 2013;5(21):10283.CrossRef
[122]
go back to reference Wang L, Wang D, Zhang F, Jin J. Interface chemistry guided long-cycle-life Li–S battery. Nano Lett. 2013;13(9):4206.CrossRef Wang L, Wang D, Zhang F, Jin J. Interface chemistry guided long-cycle-life Li–S battery. Nano Lett. 2013;13(9):4206.CrossRef
[123]
go back to reference Wang YX, Huang L, Sun LC, Xie SY, Xu GL, Chen SR, Xu YF, Li JT, Chou SL, Dou SX, Sun SG. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem. 2012;22(11):4744.CrossRef Wang YX, Huang L, Sun LC, Xie SY, Xu GL, Chen SR, Xu YF, Li JT, Chou SL, Dou SX, Sun SG. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem. 2012;22(11):4744.CrossRef
[124]
go back to reference Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522.CrossRef Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc. 2011;133(46):18522.CrossRef
[125]
go back to reference Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(13):3907.CrossRef Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed Engl. 2015;54(13):3907.CrossRef
Metadata
Title
Recent advances in cathode materials for Li–S battery: structure and performance
Authors
Chao Li
Zhen-Bo Wang
Qian Wang
Da-Ming Gu
Publication date
29-04-2017
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0900-2

Other articles of this Issue 5/2017

Rare Metals 5/2017 Go to the issue

Premium Partners