Skip to main content
Top
Published in: Rare Metals 5/2017

03-05-2017

Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials

Authors: Li-Hua Zhang, Si-Si Wu, Yi Wan, Yi-Feng Huo, Yao-Cong Luo, Ming-Yang Yang, Min-Chan Li, Zhou-Guang Lu

Published in: Rare Metals | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alkaline zinc manganese dioxide (Zn–MnO2) batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and cost-effective process for synthesizing Mn3O4/carbon nanotube (CNT) nanocomposites from recycled alkaline Zn–MnO2 batteries is presented. Manganese oxide was recovered from spent Zn–MnO2 battery cathodes. The Mn3O4/CNT nanocomposites were produced by ball milling the recovered manganese oxide in a commercial multi-wall carbon nanotubes (MWCNTs) solution. Scanning electron microscopy (SEM) analysis demonstrates that the nanocomposite has a unique three-dimensional (3D) bird nest structure. Mn3O4 nanoparticles are homogeneously distributed on MWCNT framework. Mn3O4/CNT nanocomposites were evaluated as an anode material for lithium-ion batteries, exhibiting a highly reversible specific capacitance of ~580 mAh·g−1 after 100 cycles. Moreover, Mn3O4/CNT nanocomposite also shows a fairly positive onset potential of −0.15 V and quite high oxygen reducibility when considered as an electrocatalyst for oxygen reduction reaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Biswas RK, Karmakar AK, Kumar SL. Recovery of manganese and zinc from spent Zn–C cell powder: experimental design of leaching by sulfuric acid solution containing glucose. Waste Manag. 2016;51:174.CrossRef Biswas RK, Karmakar AK, Kumar SL. Recovery of manganese and zinc from spent Zn–C cell powder: experimental design of leaching by sulfuric acid solution containing glucose. Waste Manag. 2016;51:174.CrossRef
[2]
go back to reference Sun MX, Wang YT, Hong JL, Dai JL, Wang RQ, Niu ZR, Xin BP. Life cycle assessment of a bio-hydrometallurgical treatment of spent Zn–Mn batteries. J Clean Prod. 2016;129:350.CrossRef Sun MX, Wang YT, Hong JL, Dai JL, Wang RQ, Niu ZR, Xin BP. Life cycle assessment of a bio-hydrometallurgical treatment of spent Zn–Mn batteries. J Clean Prod. 2016;129:350.CrossRef
[3]
go back to reference Sobianowska-Turek A, Szczepaniak W, Sobianowska K, Maciejewski P. Recovery of K, Na, Mn and Zn from spent batteries by leaching with water. Przem Chem. 2015;94(5):702. Sobianowska-Turek A, Szczepaniak W, Sobianowska K, Maciejewski P. Recovery of K, Na, Mn and Zn from spent batteries by leaching with water. Przem Chem. 2015;94(5):702.
[4]
go back to reference Xin BP, Jiang WF, Aslam H, Zhang K, Liu CH, Wang RQ, Wang YT. Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresour Technol. 2012;106:147.CrossRef Xin BP, Jiang WF, Aslam H, Zhang K, Liu CH, Wang RQ, Wang YT. Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresour Technol. 2012;106:147.CrossRef
[5]
go back to reference Sobianowska-Turek A, Szczepaniak W, Marcinkowski TA, Zablocka-Malicka M. Recovery of Mn and Zn by reductive acid leaching of spent batteries. Przem Chem. 2013;92(2):248. Sobianowska-Turek A, Szczepaniak W, Marcinkowski TA, Zablocka-Malicka M. Recovery of Mn and Zn by reductive acid leaching of spent batteries. Przem Chem. 2013;92(2):248.
[6]
go back to reference Falco L, Quina MJ, Gando-Ferreira LM, Thomas H, Curutchet G. Solvent extraction studies for separation of Zn(II) and Mn(II) from spent batteries leach solutions. Sep Sci Technol. 2014;49(3):398.CrossRef Falco L, Quina MJ, Gando-Ferreira LM, Thomas H, Curutchet G. Solvent extraction studies for separation of Zn(II) and Mn(II) from spent batteries leach solutions. Sep Sci Technol. 2014;49(3):398.CrossRef
[7]
go back to reference Formanek J, Jandova J, Sis J. A review of hydrometallurgical technologies for the recovery of Zn and Mn from spent alkaline and zinc batteries. Chem Listy. 2012;106(5):350. Formanek J, Jandova J, Sis J. A review of hydrometallurgical technologies for the recovery of Zn and Mn from spent alkaline and zinc batteries. Chem Listy. 2012;106(5):350.
[8]
go back to reference Cao X, Guo GH, Liu FF, Zhou Y, Zhang SS. The properties of LiMn2O4 synthesized by molten salt method using MnO2 as manganese source recycled from spent Zn–Mn batteries. Int J Electrochem Sci. 2015;10(5):3841. Cao X, Guo GH, Liu FF, Zhou Y, Zhang SS. The properties of LiMn2O4 synthesized by molten salt method using MnO2 as manganese source recycled from spent Zn–Mn batteries. Int J Electrochem Sci. 2015;10(5):3841.
[9]
go back to reference Qu J, Feng Y, Zhang Q, Cong Q, Luo CQ, Yuan X. A new insight of recycling of spent Zn–Mn alkaline batteries: synthesis of Zn x Mn1−x O nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them. J Alloys Compd. 2015;622:703.CrossRef Qu J, Feng Y, Zhang Q, Cong Q, Luo CQ, Yuan X. A new insight of recycling of spent Zn–Mn alkaline batteries: synthesis of Zn x Mn1−x O nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them. J Alloys Compd. 2015;622:703.CrossRef
[10]
go back to reference Song YN, Huang QF, Niu ZR, Ma J, Xin BP, Chen S, Dai JL, Wang RQ. Preparation of Zn–Mn ferrite from spent Zn–Mn batteries using a novel multi-step process of bioleaching and co-precipitation and boiling reflux. Hydrometallurgy. 2015;153:66.CrossRef Song YN, Huang QF, Niu ZR, Ma J, Xin BP, Chen S, Dai JL, Wang RQ. Preparation of Zn–Mn ferrite from spent Zn–Mn batteries using a novel multi-step process of bioleaching and co-precipitation and boiling reflux. Hydrometallurgy. 2015;153:66.CrossRef
[11]
go back to reference Xi GX, Xi YB, Xu HD, Wang L. Study of the preparation of Ni–Mn–Zn ferrite using spent Ni–MH and alkaline Zn–Mn batteries. J Magn Magn Mater. 2016;398:196.CrossRef Xi GX, Xi YB, Xu HD, Wang L. Study of the preparation of Ni–Mn–Zn ferrite using spent Ni–MH and alkaline Zn–Mn batteries. J Magn Magn Mater. 2016;398:196.CrossRef
[12]
go back to reference Gabal MA, Al-Luhaibi RS, Al Angari YM. Effect of Zn-substitution on the structural and magnetic properties of Mn–Zn ferrites synthesized from spent Zn–C batteries. J Magn Magn Mater. 2013;348:107.CrossRef Gabal MA, Al-Luhaibi RS, Al Angari YM. Effect of Zn-substitution on the structural and magnetic properties of Mn–Zn ferrites synthesized from spent Zn–C batteries. J Magn Magn Mater. 2013;348:107.CrossRef
[13]
go back to reference Hu P, Pan DA, Zhang SG, Tian JJ, Volinsky AA. Mn–Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn–Mn batteries. J Alloys Compd. 2011;509(9):3991.CrossRef Hu P, Pan DA, Zhang SG, Tian JJ, Volinsky AA. Mn–Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn–Mn batteries. J Alloys Compd. 2011;509(9):3991.CrossRef
[14]
go back to reference Kim TH, Kang JG, Sohn JS, Rhee KI, Lee SW, Shin SM. Preparation of Mn–Zn ferrite from spent zinc–carbon batteries by alkali leaching, acid leaching and co-precipitation. Met Mater Int. 2008;14(5):655.CrossRef Kim TH, Kang JG, Sohn JS, Rhee KI, Lee SW, Shin SM. Preparation of Mn–Zn ferrite from spent zinc–carbon batteries by alkali leaching, acid leaching and co-precipitation. Met Mater Int. 2008;14(5):655.CrossRef
[15]
go back to reference Nan JM, Han DM, Cui M, Yang MJ, Pan LM. Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater. 2006;133(1–3):257.CrossRef Nan JM, Han DM, Cui M, Yang MJ, Pan LM. Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater. 2006;133(1–3):257.CrossRef
[16]
go back to reference Chen S, Guo GH, Liu FF. Study on the performance of LiCo x Mn2−x O4−y F y using spent alkaline Zn–Mn batteries as manganese source. Solid State Ionics. 2014;261:59.CrossRef Chen S, Guo GH, Liu FF. Study on the performance of LiCo x Mn2−x O4−y F y using spent alkaline Zn–Mn batteries as manganese source. Solid State Ionics. 2014;261:59.CrossRef
[17]
go back to reference Deep A, Sharma AL, Mohanta GC, Kumar P, Kim KH. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manag. 2016;51:190.CrossRef Deep A, Sharma AL, Mohanta GC, Kumar P, Kim KH. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manag. 2016;51:190.CrossRef
[18]
go back to reference Yang M, Zhang GL, Li PF, Li XY, Chen C. Synthesis of spherical assembly composed of MnO2 nanoparticles using spent Zn–Mn batteries. Appl Mech Mater. 2012;178–181:1012.CrossRef Yang M, Zhang GL, Li PF, Li XY, Chen C. Synthesis of spherical assembly composed of MnO2 nanoparticles using spent Zn–Mn batteries. Appl Mech Mater. 2012;178–181:1012.CrossRef
[19]
go back to reference Gabal MA, Al-luhaibi RS, Al Angari YM. Mn–Zn nano-crystalline ferrites synthesized from spent Zn–C batteries using novel gelatin method. J Hazard Mater. 2013;246:227.CrossRef Gabal MA, Al-luhaibi RS, Al Angari YM. Mn–Zn nano-crystalline ferrites synthesized from spent Zn–C batteries using novel gelatin method. J Hazard Mater. 2013;246:227.CrossRef
[20]
go back to reference Ma Y, Cui Y, Zuo X, Huang S, Hu K, Xiao X, Nan J. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials. Waste Manag. 2014;34(10):1793.CrossRef Ma Y, Cui Y, Zuo X, Huang S, Hu K, Xiao X, Nan J. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials. Waste Manag. 2014;34(10):1793.CrossRef
[21]
go back to reference Vincent C, Scrosati B. Modern Batteries—An Introduction to Electrochemical Power Sources. Arnold: Elsevier; 1997. 1. Vincent C, Scrosati B. Modern Batteries—An Introduction to Electrochemical Power Sources. Arnold: Elsevier; 1997. 1.
[22]
go back to reference Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRef
[23]
go back to reference Wang YJ. Coprecipitated 3D nanostructured graphene oxide-Mn3O4 hybrid as anode of lithium-ion batteries. J Mater Res. 2015;30(4):484.CrossRef Wang YJ. Coprecipitated 3D nanostructured graphene oxide-Mn3O4 hybrid as anode of lithium-ion batteries. J Mater Res. 2015;30(4):484.CrossRef
[24]
go back to reference Nagamuthu S, Vijayakumar S, Muralidharan G. Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuel. 2013;27(6):3508.CrossRef Nagamuthu S, Vijayakumar S, Muralidharan G. Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuel. 2013;27(6):3508.CrossRef
[25]
go back to reference Lee JW, Hall AS, Kim JD, Mallouk TE. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater. 2012;24(6):1158.CrossRef Lee JW, Hall AS, Kim JD, Mallouk TE. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater. 2012;24(6):1158.CrossRef
[26]
go back to reference Gorlin Y, Chung CJ, Nordlund D, Clemens BM, Jaramillo TF. Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal. 2012;2(12):2687.CrossRef Gorlin Y, Chung CJ, Nordlund D, Clemens BM, Jaramillo TF. Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal. 2012;2(12):2687.CrossRef
[27]
go back to reference Morelos-Gomez A, Fujishige M, Vega-Diaz SM, Ito I, Fukuyo T, Cruz-Silva R, Tristan-Lopez F, Fujisawa K, Fujimori T, Futamura R, Kaneko K, Takeuchi K, Hayashi T, Kim YA, Terrones M, Endo M, Dresselhaus MS. High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. J Mater Chem A. 2016;4(1):74.CrossRef Morelos-Gomez A, Fujishige M, Vega-Diaz SM, Ito I, Fukuyo T, Cruz-Silva R, Tristan-Lopez F, Fujisawa K, Fujimori T, Futamura R, Kaneko K, Takeuchi K, Hayashi T, Kim YA, Terrones M, Endo M, Dresselhaus MS. High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. J Mater Chem A. 2016;4(1):74.CrossRef
[28]
go back to reference Sato-Berru RY, Vazquez-Olmos A, Fernandez-Osorio AL, Sotres-Martinez S. Micro-Raman investigation of transition-metal-doped ZnO nanoparticles. J Raman Spectrosc. 2007;38(9):1073.CrossRef Sato-Berru RY, Vazquez-Olmos A, Fernandez-Osorio AL, Sotres-Martinez S. Micro-Raman investigation of transition-metal-doped ZnO nanoparticles. J Raman Spectrosc. 2007;38(9):1073.CrossRef
[29]
go back to reference Liang X, Wen ZY, Liu Y, Wu MF, Jin J, Zhang H, Wu XW. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sour. 2011;196(22):9839.CrossRef Liang X, Wen ZY, Liu Y, Wu MF, Jin J, Zhang H, Wu XW. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sour. 2011;196(22):9839.CrossRef
[30]
go back to reference Lima FHB, Calegaro ML, Ticianelli EA. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem. 2006;590(2):152.CrossRef Lima FHB, Calegaro ML, Ticianelli EA. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem. 2006;590(2):152.CrossRef
Metadata
Title
Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials
Authors
Li-Hua Zhang
Si-Si Wu
Yi Wan
Yi-Feng Huo
Yao-Cong Luo
Ming-Yang Yang
Min-Chan Li
Zhou-Guang Lu
Publication date
03-05-2017
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0902-0

Other articles of this Issue 5/2017

Rare Metals 5/2017 Go to the issue

Premium Partners