Skip to main content
Erschienen in: Rare Metals 4/2016

01.04.2016

Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery

verfasst von: Feng-Ling Yun, Ling Tang, Wen-Cheng Li, Wei-Ren Jin, Jing Pang, Shi-Gang Lu

Erschienen in: Rare Metals | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries (LIBs) pack/module. In this work, a 25 Ah pouch type Li[Ni0.7Co0.15Mn0.15]O2/graphite LIBs with specific energy of 200 Wh·kg−1 were designed to investigate their thermal behaviors, including temperature distribution, heat generation rate, heat capacity and heat transfer coefficient with environment. Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge. The heat generation rate is mainly influenced by the irreversible heat effect, while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the temperature during discharge, especially at low rate. Subsequently, a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs. The predicted results match well with the experimental results at all discharge rates. Therefore, the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Sun YK, Myung ST, Park BC, Park BC, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8(4):320.CrossRef Sun YK, Myung ST, Park BC, Park BC, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8(4):320.CrossRef
[2]
Zurück zum Zitat Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2. J Power Sources. 2013;233(1):121.CrossRef Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2. J Power Sources. 2013;233(1):121.CrossRef
[3]
Zurück zum Zitat Hamut H, Dincer I, Naterer G. Performance assessment of thermal management systems for electric and hybrid electric vehicles. Int J Energy Res. 2013;37(1):1.CrossRef Hamut H, Dincer I, Naterer G. Performance assessment of thermal management systems for electric and hybrid electric vehicles. Int J Energy Res. 2013;37(1):1.CrossRef
[4]
Zurück zum Zitat Hong JS, Maleki H, Al Hallaj S, Ready L, Selman JR. Electrochemical-calorimetric studies of lithium-ion cells. J Electrochem Soc. 1998;145(5):1489.CrossRef Hong JS, Maleki H, Al Hallaj S, Ready L, Selman JR. Electrochemical-calorimetric studies of lithium-ion cells. J Electrochem Soc. 1998;145(5):1489.CrossRef
[5]
Zurück zum Zitat Spotnitz RM, Weaver J, Yeduvaka G, Doughty DH, Roth EP. Simulation of abuse tolerance of lithium-ion battery packs. J Power Sources. 2007;163(2):1080.CrossRef Spotnitz RM, Weaver J, Yeduvaka G, Doughty DH, Roth EP. Simulation of abuse tolerance of lithium-ion battery packs. J Power Sources. 2007;163(2):1080.CrossRef
[6]
Zurück zum Zitat Troxler Y, Wu B, Marinescu M, Yufit V, Patel Y, Marquis AJ, Brandon NP, Offer GJ. The effect of thermal gradients on the performance of lithium-ion batteries. J Power Sources. 2014;247(2):1018.CrossRef Troxler Y, Wu B, Marinescu M, Yufit V, Patel Y, Marquis AJ, Brandon NP, Offer GJ. The effect of thermal gradients on the performance of lithium-ion batteries. J Power Sources. 2014;247(2):1018.CrossRef
[7]
Zurück zum Zitat Awarke A, Jaeger M, Oezdemir O, Pischinger S. Thermal analysis of a Li-ion battery module under realistic EV operating conditions. Int J Energy Res. 2013;37(6):617.CrossRef Awarke A, Jaeger M, Oezdemir O, Pischinger S. Thermal analysis of a Li-ion battery module under realistic EV operating conditions. Int J Energy Res. 2013;37(6):617.CrossRef
[8]
Zurück zum Zitat Smith K, Kim GH, Darcy E, Pesaran A. Thermal/electrical modeling for abuse-tolerant design of lithium ion modules. Int J Energy Res. 2010;34(2):204.CrossRef Smith K, Kim GH, Darcy E, Pesaran A. Thermal/electrical modeling for abuse-tolerant design of lithium ion modules. Int J Energy Res. 2010;34(2):204.CrossRef
[9]
Zurück zum Zitat Al Hallaj S, Maleki H, Hong J, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83(1):1.CrossRef Al Hallaj S, Maleki H, Hong J, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83(1):1.CrossRef
[10]
Zurück zum Zitat Kobayashi Y, Kihira N, Takei K, Miyashiro H, Kumai K, Terada N, Ishikawa R. Electrochemical and calorimetric approach to spinel lithium manganese oxide. J Power Sources. 1999;81(9):463.CrossRef Kobayashi Y, Kihira N, Takei K, Miyashiro H, Kumai K, Terada N, Ishikawa R. Electrochemical and calorimetric approach to spinel lithium manganese oxide. J Power Sources. 1999;81(9):463.CrossRef
[11]
Zurück zum Zitat Santhanagopalan S, Zhang Q, Kumaresan K, White RE. Parameter estimation and life modeling of lithium-ion cells. J Electrochem Soc. 2008;155(4):A345.CrossRef Santhanagopalan S, Zhang Q, Kumaresan K, White RE. Parameter estimation and life modeling of lithium-ion cells. J Electrochem Soc. 2008;155(4):A345.CrossRef
[12]
Zurück zum Zitat Li WC, Lu SG. Thermal behavior of C/LiFePO4 power secondary battery. Trans Nonferrous Met Soc China. 2012;22(4):1156. Li WC, Lu SG. Thermal behavior of C/LiFePO4 power secondary battery. Trans Nonferrous Met Soc China. 2012;22(4):1156.
[13]
Zurück zum Zitat Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources. 2010;195(9):2961.CrossRef Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources. 2010;195(9):2961.CrossRef
[14]
Zurück zum Zitat Waag W, Käbitz S, Sauer DU. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy. 2013;102(2):885.CrossRef Waag W, Käbitz S, Sauer DU. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy. 2013;102(2):885.CrossRef
[15]
Zurück zum Zitat Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc. 1985;132(1):5.CrossRef Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc. 1985;132(1):5.CrossRef
[16]
Zurück zum Zitat Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140(6):1526.CrossRef Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140(6):1526.CrossRef
[17]
Zurück zum Zitat Chen Y, Evans JW. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc. 1993;140(7):1833.CrossRef Chen Y, Evans JW. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc. 1993;140(7):1833.CrossRef
[18]
Zurück zum Zitat Pals CR, Newman J. Thermal modeling of the lithium/polymer battery II. Temperature profiles in a cell stack. J Electrochem Soc. 1995;142(10):3282.CrossRef Pals CR, Newman J. Thermal modeling of the lithium/polymer battery II. Temperature profiles in a cell stack. J Electrochem Soc. 1995;142(10):3282.CrossRef
[19]
Zurück zum Zitat Song L, Evans JW. Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc. 2000;147(6):2086.CrossRef Song L, Evans JW. Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc. 2000;147(6):2086.CrossRef
[20]
Zurück zum Zitat Inui Y, Kobayashi Y, Watanabe Y, Watase Y, Kitamura Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers Manag. 2007;48(7):2103.CrossRef Inui Y, Kobayashi Y, Watanabe Y, Watase Y, Kitamura Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers Manag. 2007;48(7):2103.CrossRef
[21]
Zurück zum Zitat Jeon DH, Baek SM. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Convers Manag. 2011;52(8):2973.CrossRef Jeon DH, Baek SM. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Convers Manag. 2011;52(8):2973.CrossRef
[22]
Zurück zum Zitat Abdul-Quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilhto K, Skogström L, Paulasto-Kröckel M. Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res. 2014;38(11):1424.CrossRef Abdul-Quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilhto K, Skogström L, Paulasto-Kröckel M. Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res. 2014;38(11):1424.CrossRef
[23]
Zurück zum Zitat Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1.CrossRef Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1.CrossRef
[24]
Zurück zum Zitat Kang J, Rizzoni G. Study of relationship between temperature and thermal energy, operating conditions as well as environmental factors in large-scale lithium-ion batteries. Int J Energy Res. 2014;38(15):1994.CrossRef Kang J, Rizzoni G. Study of relationship between temperature and thermal energy, operating conditions as well as environmental factors in large-scale lithium-ion batteries. Int J Energy Res. 2014;38(15):1994.CrossRef
[25]
Zurück zum Zitat Srinivasan V, Wang CY. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98.CrossRef Srinivasan V, Wang CY. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98.CrossRef
[26]
Zurück zum Zitat Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H. Thermal properties of lithium-ion battery and components. J Electrochem Soc. 1999;146(3):947.CrossRef Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H. Thermal properties of lithium-ion battery and components. J Electrochem Soc. 1999;146(3):947.CrossRef
[27]
Zurück zum Zitat Chen SC, Wang YY, Wan CC. Thermal analysis of spirally wound lithium batteries. J Electrochem Soc. 2006;153(4):A637.CrossRef Chen SC, Wang YY, Wan CC. Thermal analysis of spirally wound lithium batteries. J Electrochem Soc. 2006;153(4):A637.CrossRef
[28]
Zurück zum Zitat Yi J, Kim US, Shin CB, Han T, Park S. Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J Electrochem Soc. 2013;160(3):A437.CrossRef Yi J, Kim US, Shin CB, Han T, Park S. Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J Electrochem Soc. 2013;160(3):A437.CrossRef
[29]
Zurück zum Zitat Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81.CrossRef Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81.CrossRef
[30]
Zurück zum Zitat Chen Y, Evans JW. Thermal analysis of lithium-ion batteries. J Electrochem Soc. 1996;143(9):2708.CrossRef Chen Y, Evans JW. Thermal analysis of lithium-ion batteries. J Electrochem Soc. 1996;143(9):2708.CrossRef
[31]
Zurück zum Zitat Chen S, Wan C, Wang Y. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140(1):111.CrossRef Chen S, Wan C, Wang Y. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140(1):111.CrossRef
[32]
Zurück zum Zitat Bang H, Yang H, Sun YK, Prakash J. In situ studies of Li x Mn2O4 and Li x Al0.17Mn1.83O3.97S0.03 cathode by IMC. J Electrochem Soc. 2005;152(2):A421.CrossRef Bang H, Yang H, Sun YK, Prakash J. In situ studies of Li x Mn2O4 and Li x Al0.17Mn1.83O3.97S0.03 cathode by IMC. J Electrochem Soc. 2005;152(2):A421.CrossRef
[33]
Zurück zum Zitat Kim JS, Prakash J, Selman J. Thermal characteristics of Li x Mn2O4 spinel. Electrochem Solid-State Lett. 2001;4(9):A141.CrossRef Kim JS, Prakash J, Selman J. Thermal characteristics of Li x Mn2O4 spinel. Electrochem Solid-State Lett. 2001;4(9):A141.CrossRef
[34]
Zurück zum Zitat Williford RE, Viswanathan VV, Zhang JG. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries. J Power Sources. 2009;189(1):101.CrossRef Williford RE, Viswanathan VV, Zhang JG. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries. J Power Sources. 2009;189(1):101.CrossRef
[35]
Zurück zum Zitat Kim US, Shin CB, Kim CS. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery. J Power Sources. 2008;180(2):909.CrossRef Kim US, Shin CB, Kim CS. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery. J Power Sources. 2008;180(2):909.CrossRef
[36]
Zurück zum Zitat Onda K, Kameyama H, Hanamoto T, Ito K. Experimental study on heat generation behavior of small lithium-ion secondary batteries. J Electrochem Soc. 2003;150(3):A285.CrossRef Onda K, Kameyama H, Hanamoto T, Ito K. Experimental study on heat generation behavior of small lithium-ion secondary batteries. J Electrochem Soc. 2003;150(3):A285.CrossRef
[37]
Zurück zum Zitat Thomas KE, Newman J. Heats of mixing and of entropy in porous insertion electrodes. J Power Sources. 2003;119(6):844.CrossRef Thomas KE, Newman J. Heats of mixing and of entropy in porous insertion electrodes. J Power Sources. 2003;119(6):844.CrossRef
[38]
Zurück zum Zitat Kim US, Shin CB, Kim CS. Modeling for the scale-up of a lithium-ion polymer battery. J Power Sources. 2009;189(1):841.CrossRef Kim US, Shin CB, Kim CS. Modeling for the scale-up of a lithium-ion polymer battery. J Power Sources. 2009;189(1):841.CrossRef
[39]
Zurück zum Zitat Rao L, Newman J. Heat-generation rate and general energy balance for insertion battery systems. J Electrochem Soc. 1997;144(8):2697.CrossRef Rao L, Newman J. Heat-generation rate and general energy balance for insertion battery systems. J Electrochem Soc. 1997;144(8):2697.CrossRef
[40]
Zurück zum Zitat Yeow K, Teng H, Thelliez M, Tan E. Comparative study on thermal behavior of lithium-ion battery systems with indirect air cooling and indirect liquid cooling. In: Proceedings of the ASME/ISCIE International Symposium on Flexible Automation. Missouri, USA: St. Louis; 2012. 585. Yeow K, Teng H, Thelliez M, Tan E. Comparative study on thermal behavior of lithium-ion battery systems with indirect air cooling and indirect liquid cooling. In: Proceedings of the ASME/ISCIE International Symposium on Flexible Automation. Missouri, USA: St. Louis; 2012. 585.
[41]
Zurück zum Zitat Zhang X. Thermal analysis of a cylindrical lithium-ion battery. Electrochim Acta. 2011;56(3):1246.CrossRef Zhang X. Thermal analysis of a cylindrical lithium-ion battery. Electrochim Acta. 2011;56(3):1246.CrossRef
[42]
Zurück zum Zitat Al Hallaj S, Prakash J, Selman J. Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J. Power Sources. 2000;87(1):186.CrossRef Al Hallaj S, Prakash J, Selman J. Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J. Power Sources. 2000;87(1):186.CrossRef
[43]
Zurück zum Zitat Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc. 1996;143(6):1890.CrossRef Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc. 1996;143(6):1890.CrossRef
[44]
Zurück zum Zitat Srinivasan V, Wang C. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98.CrossRef Srinivasan V, Wang C. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98.CrossRef
[45]
Zurück zum Zitat Verbrugge MW. Three-dimensional temperature and current distribution in a battery module. J AIChE. 1995;41(6):1550.CrossRef Verbrugge MW. Three-dimensional temperature and current distribution in a battery module. J AIChE. 1995;41(6):1550.CrossRef
[46]
Zurück zum Zitat Al Hallaj S, Venkatachalapathy R, Prakash J, Selman JR. Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode. J Electrochem Soc. 2000;147(7):2432.CrossRef Al Hallaj S, Venkatachalapathy R, Prakash J, Selman JR. Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode. J Electrochem Soc. 2000;147(7):2432.CrossRef
[47]
Zurück zum Zitat Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang ZG. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources. 2010;195(11):3720.CrossRef Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang ZG. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources. 2010;195(11):3720.CrossRef
[48]
Zurück zum Zitat Thomas KE, Newman J. Thermal modeling of porous insertion electrodes. J Electrochem Soc. 2003;150(2):A176.CrossRef Thomas KE, Newman J. Thermal modeling of porous insertion electrodes. J Electrochem Soc. 2003;150(2):A176.CrossRef
[49]
Zurück zum Zitat Ohshima T, Nakayama M, Fukuda K, Araki T, Onda K. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sources. 2006;157(3):17. Ohshima T, Nakayama M, Fukuda K, Araki T, Onda K. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sources. 2006;157(3):17.
[50]
Zurück zum Zitat Kumaresan K, Sikha G, White RE. Thermal model for a Li-ion cell. J Electrochem Soc. 2008;155(2):A164.CrossRef Kumaresan K, Sikha G, White RE. Thermal model for a Li-ion cell. J Electrochem Soc. 2008;155(2):A164.CrossRef
Metadaten
Titel
Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery
verfasst von
Feng-Ling Yun
Ling Tang
Wen-Cheng Li
Wei-Ren Jin
Jing Pang
Shi-Gang Lu
Publikationsdatum
01.04.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2016
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0605-3

Weitere Artikel der Ausgabe 4/2016

Rare Metals 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.