Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Rheological Behaviour of Hybrid Nanofluids: A Review

Authors : Anuj Kumar Sharma, Rabesh Kumar Singh, Arun Kumar Tiwari, Amit Rai Dixit, Jitendra Kumar Katiyar

Published in: Tribology in Materials and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A colloidal mixture of two different nanoparticles into conventional fluid (water, oil and metal working fluids etc.) called as hybrid nanofluids. Hybrid nanofluids are considered as the most promising and emerging as heat transfer fluid in cooling applications as compared to the conventional fluid and a well as mono type nanofluids. Mixture of solid particles and fluid is also called as two phase fluids. Mixing of nano meter-sized particles into conventional heat transfer fluid enhance the performance of the newly developed hybrid nanofluid. In last few years, it has taken the researchers attention to work on the mixing of two or more nano-sized particles in conventional heat transfer fluids. Few of the studies shows that hybrid nanofluid perform better as compared to single nanofluids and has the ability to replace the single nanoparticles mixed fluid. However, in the published literature several studies has shown that there are number of parameters such as concentration of nanoparticles, shape, size, temperature, intensity of ultra-sonication, pH, and stability affecting the performance of the nanoparticles mixed cutting fluids. In the present paper, a comprehensive study has been carried out to show the recent development related to the hybrid nanofluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Azwadi, C. Sidik, M. Noor, W. Mohd, R. Mamat, A review on the application of nano fluids in vehicle engine cooling system. Int Commun. Heat Mass Transf. 68, 85–90 (2015) N. Azwadi, C. Sidik, M. Noor, W. Mohd, R. Mamat, A review on the application of nano fluids in vehicle engine cooling system. Int Commun. Heat Mass Transf. 68, 85–90 (2015)
2.
go back to reference S. Zainal, C. Tan, C.J. Sian, ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular pipe. J. Adv. Res. Appl. Mech. 23, 20–35 (2016) S. Zainal, C. Tan, C.J. Sian, ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular pipe. J. Adv. Res. Appl. Mech. 23, 20–35 (2016)
3.
go back to reference S. Lee, S.U.S. Choi, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. Trans. ASME 121, 280–289 (1999)CrossRef S. Lee, S.U.S. Choi, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. Trans. ASME 121, 280–289 (1999)CrossRef
4.
go back to reference S. Khandekar, M.R. Sankar, V. Agnihotri, J. Ramkumar, Nano-cutting fluid for enhancement of metal cutting performance. Mater. Manuf. Process. 27(9), 963–967 (2012)CrossRef S. Khandekar, M.R. Sankar, V. Agnihotri, J. Ramkumar, Nano-cutting fluid for enhancement of metal cutting performance. Mater. Manuf. Process. 27(9), 963–967 (2012)CrossRef
5.
go back to reference M. Sayuti, O.M. Erh, A.A.D. Sarhan, M. Hamdi, Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system. J. Clean. Prod. 66, 655–663 (2014)CrossRef M. Sayuti, O.M. Erh, A.A.D. Sarhan, M. Hamdi, Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system. J. Clean. Prod. 66, 655–663 (2014)CrossRef
6.
go back to reference J.S. Nam, P.-H. Lee, S.W. Lee, Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. Int. J. Mach. Tools Manuf 51(7–8), 649–652 (2011)CrossRef J.S. Nam, P.-H. Lee, S.W. Lee, Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. Int. J. Mach. Tools Manuf 51(7–8), 649–652 (2011)CrossRef
7.
go back to reference R.K. Singh, A.R. Dixit, A. Mandal, A.K. Sharma, Emerging application of nanoparticle-enriched cutting fluid in metal removal processes: a review. J. Brazilian Soc. Mech. Sci. Eng. 39(11), 4677–4717 (2017)CrossRef R.K. Singh, A.R. Dixit, A. Mandal, A.K. Sharma, Emerging application of nanoparticle-enriched cutting fluid in metal removal processes: a review. J. Brazilian Soc. Mech. Sci. Eng. 39(11), 4677–4717 (2017)CrossRef
8.
go back to reference S. Prabhu, B.K. Vinayagam, AFM investigation in grinding process with nanofluids using taguchi analysis. Int. J. Adv. Manuf. Technol. 60(1), 149–160 (2012)CrossRef S. Prabhu, B.K. Vinayagam, AFM investigation in grinding process with nanofluids using taguchi analysis. Int. J. Adv. Manuf. Technol. 60(1), 149–160 (2012)CrossRef
9.
go back to reference B. Rahmati, A.A.D. Sarhan, M. Sayuti, Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int. J. Adv. Manuf. Technol. 70(5–8), 1143–1155 (2014)CrossRef B. Rahmati, A.A.D. Sarhan, M. Sayuti, Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int. J. Adv. Manuf. Technol. 70(5–8), 1143–1155 (2014)CrossRef
10.
go back to reference K.-H. Park, B. Ewald, P.Y. Kwon, Effect of Nano-enhanced lubricant in minimum quantity lubrication balling milling. J. Tribol. 133(3), 031803 (2011)CrossRef K.-H. Park, B. Ewald, P.Y. Kwon, Effect of Nano-enhanced lubricant in minimum quantity lubrication balling milling. J. Tribol. 133(3), 031803 (2011)CrossRef
11.
go back to reference E.O.L. Ettefaghi, A. Rashidi, H. Ahmadi, S.S. Mohtasebi, M. Pourkhalil, Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transf. 48, 178–182 (2013)CrossRef E.O.L. Ettefaghi, A. Rashidi, H. Ahmadi, S.S. Mohtasebi, M. Pourkhalil, Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transf. 48, 178–182 (2013)CrossRef
12.
go back to reference A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transf. 55(5–6), 1529–1535 (2012)CrossRef A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transf. 55(5–6), 1529–1535 (2012)CrossRef
13.
go back to reference A.K. Tiwari, P. Ghosh, J. Sarkar, Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci. 49, 141–151 (2013)CrossRef A.K. Tiwari, P. Ghosh, J. Sarkar, Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci. 49, 141–151 (2013)CrossRef
14.
go back to reference S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2—water based nanofluids. Int. J. Therm. Sci. 44(4), 367–373 (2005)CrossRef S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2—water based nanofluids. Int. J. Therm. Sci. 44(4), 367–373 (2005)CrossRef
15.
go back to reference R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15(3), 1646–1668 (2011)CrossRef R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15(3), 1646–1668 (2011)CrossRef
16.
go back to reference X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRef X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRef
17.
go back to reference R.K. Singh, A.K. Sharma, A.R. Dixit, A. Mandal, A.K. Tiwari, Experimental investigation of thermal conductivity and specific heat of nanoparticles mixed cutting fluids. Mater. Today Proc. 4(8), 8587–8596 (2017)CrossRef R.K. Singh, A.K. Sharma, A.R. Dixit, A. Mandal, A.K. Tiwari, Experimental investigation of thermal conductivity and specific heat of nanoparticles mixed cutting fluids. Mater. Today Proc. 4(8), 8587–8596 (2017)CrossRef
18.
go back to reference T. Chang, S. Syu, Y. Yang, International Journal of heat and mass transfer effects of particle volume fraction on spray heat transfer performance of Al2O3—water nanofluid. Int. J. Heat Mass Transf. 55(4), 1014–1021 (2012)CrossRef T. Chang, S. Syu, Y. Yang, International Journal of heat and mass transfer effects of particle volume fraction on spray heat transfer performance of Al2O3—water nanofluid. Int. J. Heat Mass Transf. 55(4), 1014–1021 (2012)CrossRef
19.
go back to reference J. Sarkar, A critical review on convective heat transfer correlations of nanofluids. Renew. Sustain. Energy Rev. 15(6), 3271–3277 (2011)CrossRef J. Sarkar, A critical review on convective heat transfer correlations of nanofluids. Renew. Sustain. Energy Rev. 15(6), 3271–3277 (2011)CrossRef
20.
go back to reference A.K. Tiwari, P. Ghosh, J. Sarkar, Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl. Therm. Eng. 57(1–2), 24–32 (2013)CrossRef A.K. Tiwari, P. Ghosh, J. Sarkar, Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl. Therm. Eng. 57(1–2), 24–32 (2013)CrossRef
21.
go back to reference A.K. Tiwari, G. Pradyumna, S. Jahar, Investigation of thermal conductivity and viscosity of nanofluids. J. Environ. Res. Dev. 7(2), 768–777 (2012) A.K. Tiwari, G. Pradyumna, S. Jahar, Investigation of thermal conductivity and viscosity of nanofluids. J. Environ. Res. Dev. 7(2), 768–777 (2012)
22.
go back to reference R.S. Vajjha, D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int. J. Heat Mass Transf. 55(15–16), 4063–4078 (2012)CrossRef R.S. Vajjha, D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int. J. Heat Mass Transf. 55(15–16), 4063–4078 (2012)CrossRef
23.
go back to reference H. Chen, Y. Ding, Heat transfer and rheological behaviour of nanofluids—a review, in Advances in Transport Phenomena: 2009, ed. by L. Wang (Springer, Heidelberg, 2009), pp. 135–177CrossRef H. Chen, Y. Ding, Heat transfer and rheological behaviour of nanofluids—a review, in Advances in Transport Phenomena: 2009, ed. by L. Wang (Springer, Heidelberg, 2009), pp. 135–177CrossRef
24.
go back to reference J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)CrossRef J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)CrossRef
25.
go back to reference C. Sinz, H. Woei, M. Khalis, S.A. Abbas, Akademia baru numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. J. Adv. Res. Fluid Mech. Therm. Sci. 24(1), 1–11 (2016) C. Sinz, H. Woei, M. Khalis, S.A. Abbas, Akademia baru numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. J. Adv. Res. Fluid Mech. Therm. Sci. 24(1), 1–11 (2016)
26.
go back to reference S. Jana, A. Salehi-Khojin, W.H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462(1–2), 45–55 (2007)CrossRef S. Jana, A. Salehi-Khojin, W.H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462(1–2), 45–55 (2007)CrossRef
27.
go back to reference N. Jha, S. Ramaprabhu, Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J. Appl. Phys. 106, 084317 (2009)CrossRef N. Jha, S. Ramaprabhu, Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J. Appl. Phys. 106, 084317 (2009)CrossRef
28.
go back to reference M. Chopkar, S. Kumar, D.R. Bhandari, P.K. Das, I. Manna, Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater. Sci. Eng.: B 139, 141–148 (2007) M. Chopkar, S. Kumar, D.R. Bhandari, P.K. Das, I. Manna, Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater. Sci. Eng.: B 139, 141–148 (2007)
29.
go back to reference L.F. Chen, M. Cheng, D.J. Yang, L. Yang, Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl. Mech. Mater. 548–549, 118–123 (2014) L.F. Chen, M. Cheng, D.J. Yang, L. Yang, Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl. Mech. Mater. 548–549, 118–123 (2014)
30.
go back to reference B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 39(6), 6415–6425 (2013)CrossRef B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int. 39(6), 6415–6425 (2013)CrossRef
31.
go back to reference T.T. Baby, S. Ramaprabhu, Synthesis and nanofluid application of silver nanoparticles decorated graphene. J. Mater. Chem. 21, 9702–9709 (2011)CrossRef T.T. Baby, S. Ramaprabhu, Synthesis and nanofluid application of silver nanoparticles decorated graphene. J. Mater. Chem. 21, 9702–9709 (2011)CrossRef
32.
go back to reference T.T. Baby, R. Sundara, Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J. Phys. Chem. 115(17), 8527–8533 (2011) T.T. Baby, R. Sundara, Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J. Phys. Chem. 115(17), 8527–8533 (2011)
33.
go back to reference S.S.J. Aravind, S. Ramaprabhu, Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3(13), 4199–4206 (2013)CrossRef S.S.J. Aravind, S. Ramaprabhu, Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3(13), 4199–4206 (2013)CrossRef
34.
go back to reference R.K. Singh, A.R. Dixit, A.K. Sharma, A.K. Tiwari, V. Mandal, A. Pramanik, Influence of graphene and multi-walled carbon nanotube additives on tribological behaviour of lubricants. Int. J. Surf. Sci. Eng. 12(3), 207–227 (2018)CrossRef R.K. Singh, A.R. Dixit, A.K. Sharma, A.K. Tiwari, V. Mandal, A. Pramanik, Influence of graphene and multi-walled carbon nanotube additives on tribological behaviour of lubricants. Int. J. Surf. Sci. Eng. 12(3), 207–227 (2018)CrossRef
35.
go back to reference S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRef S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRef
36.
go back to reference M. Batmunkh, M. Myekhlai, H. Choi, H. Chung, H. Jeong, Thermal conductivity of TiO2 nanoparticles based aqueous nano fluids with an addition of a modified silver particle. Ind. Eng. Chem. Res. 53, 8445–8451 (2014)CrossRef M. Batmunkh, M. Myekhlai, H. Choi, H. Chung, H. Jeong, Thermal conductivity of TiO2 nanoparticles based aqueous nano fluids with an addition of a modified silver particle. Ind. Eng. Chem. Res. 53, 8445–8451 (2014)CrossRef
37.
go back to reference Z.H. Han, B. Yang, S.H. Kim, M.R. Zachariah, Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 18(10), 105701 (2007)CrossRef Z.H. Han, B. Yang, S.H. Kim, M.R. Zachariah, Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 18(10), 105701 (2007)CrossRef
38.
go back to reference S.S. Botha, P. Ndungu, B.J. Bladergroen, Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind. Eng. Chem. Res. 50(6), 3071–3077 (2011)CrossRef S.S. Botha, P. Ndungu, B.J. Bladergroen, Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind. Eng. Chem. Res. 50(6), 3071–3077 (2011)CrossRef
39.
go back to reference G. Paul, J. Philip, B. Raj, P.K. Das, I. Manna, Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int. J. Heat Mass Transf. 54(15–16), 3783–3788 (2011)CrossRef G. Paul, J. Philip, B. Raj, P.K. Das, I. Manna, Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int. J. Heat Mass Transf. 54(15–16), 3783–3788 (2011)CrossRef
40.
go back to reference S.M. Abbasi, A. Rashidi, A. Nemati, K. Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 39(4), 3885–3891 (2013)CrossRef S.M. Abbasi, A. Rashidi, A. Nemati, K. Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 39(4), 3885–3891 (2013)CrossRef
41.
go back to reference M.J. Nine, M. Batmunkh, J.-H. Kim, H.-S. Chung, H.-M. Jeong, Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J. Nanosci. Nanotechnol. 12(6), 4553–4559 (2012)CrossRef M.J. Nine, M. Batmunkh, J.-H. Kim, H.-S. Chung, H.-M. Jeong, Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J. Nanosci. Nanotechnol. 12(6), 4553–4559 (2012)CrossRef
42.
go back to reference M. Afrand, Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng. 110, 1111–1119 (2017)CrossRef M. Afrand, Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng. 110, 1111–1119 (2017)CrossRef
43.
go back to reference O. Soltani, M. Akbari, Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nano fluid: Experimental study. Phys. E Low-dimensional Syst. Nanostruct. 84, 564–570 (2016)CrossRef O. Soltani, M. Akbari, Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nano fluid: Experimental study. Phys. E Low-dimensional Syst. Nanostruct. 84, 564–570 (2016)CrossRef
44.
go back to reference L.S. Sundar, E.V. Ramana, M.P.F. Graça, M.K. Singh, A.C.M. Sousa, Nanodiamond-Fe3O nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int. Commun. Heat Mass Transf. 73, 62–74 (2016)CrossRef L.S. Sundar, E.V. Ramana, M.P.F. Graça, M.K. Singh, A.C.M. Sousa, Nanodiamond-Fe3O nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int. Commun. Heat Mass Transf. 73, 62–74 (2016)CrossRef
45.
go back to reference H. Saeed Sarbolookzadeh, A. Karimipour, M. Afrand, M. Akbari, A.D. Orazio, An experimental study on thermal conductivity of F-MWCNTs—Fe3O4/EG hybrid nano fluid : Effects of temperature and concentration. Int. Commun. Heat Mass Transf. 76, 171–177 (2016) H. Saeed Sarbolookzadeh, A. Karimipour, M. Afrand, M. Akbari, A.D. Orazio, An experimental study on thermal conductivity of F-MWCNTs—Fe3O4/EG hybrid nano fluid : Effects of temperature and concentration. Int. Commun. Heat Mass Transf. 76, 171–177 (2016)
46.
go back to reference H. Eshgarf, M. Afrand, An experimental study on rheological behavior of non-newtonian hybrid nano-coolant for application in cooling and heating systems. Exp. Therm. Fluid Sci. 76, 221–227 (2016)CrossRef H. Eshgarf, M. Afrand, An experimental study on rheological behavior of non-newtonian hybrid nano-coolant for application in cooling and heating systems. Exp. Therm. Fluid Sci. 76, 221–227 (2016)CrossRef
47.
go back to reference M. Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp. Therm. Fluid Sci. 77, 38–44 (2016)CrossRef M. Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp. Therm. Fluid Sci. 77, 38–44 (2016)CrossRef
48.
go back to reference M. Hemmat Esfe, A. Akbar, A. Arani, M. Rezaie, W. Yan, A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nano fluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)CrossRef M. Hemmat Esfe, A. Akbar, A. Arani, M. Rezaie, W. Yan, A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nano fluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)CrossRef
49.
go back to reference M.H. Esfe, W. Yan, M. Akbari, A. Karimipour, M. Hassani, Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Transf. 68, 248–251 (2015)CrossRef M.H. Esfe, W. Yan, M. Akbari, A. Karimipour, M. Hassani, Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Transf. 68, 248–251 (2015)CrossRef
50.
go back to reference M. Hemmat Esfe et al., Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66, 100–104 (2015)CrossRef M. Hemmat Esfe et al., Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66, 100–104 (2015)CrossRef
51.
go back to reference L.S. Sundar, A.C.M. Sousa, M.K. Singh, Heat transfer enhancement of low volume concentration of hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J Therm. Sci. Eng. Appl. 7(2), 021015 (1–12) (2015) L.S. Sundar, A.C.M. Sousa, M.K. Singh, Heat transfer enhancement of low volume concentration of hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J Therm. Sci. Eng. Appl. 7(2), 021015 (1–12) (2015)
52.
go back to reference L.S. Sundar, M.K. Singh, E.V. Ramana, B. Singh, J. Grácio, A.C.M. Sousa, Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci. Rep. 4, 4039 (1–14) (2014) L.S. Sundar, M.K. Singh, E.V. Ramana, B. Singh, J. Grácio, A.C.M. Sousa, Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci. Rep. 4, 4039 (1–14) (2014)
53.
go back to reference M. Baghbanzadeh, A. Rashidi, A.H. Soleimanisalim, D. Rashtchian, Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim. Acta 578, 53–58 (2014)CrossRef M. Baghbanzadeh, A. Rashidi, A.H. Soleimanisalim, D. Rashtchian, Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim. Acta 578, 53–58 (2014)CrossRef
54.
go back to reference B. Takabi, S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. 6, Article ID 147059 (1–16) (2014) B. Takabi, S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. 6, Article ID 147059 (1–16) (2014)
55.
go back to reference Y. Xuan, H. Duan, Q. Li, Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Adv. 4(31), 6206–16213 (2014)CrossRef Y. Xuan, H. Duan, Q. Li, Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Adv. 4(31), 6206–16213 (2014)CrossRef
56.
go back to reference D. Madhesh, R. Parameshwaran, S. Kalaiselvam, Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Exp. Therm. Fluid Sci. 52, 104–115 (2014)CrossRef D. Madhesh, R. Parameshwaran, S. Kalaiselvam, Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Exp. Therm. Fluid Sci. 52, 104–115 (2014)CrossRef
57.
go back to reference R.K. Singh, A.K. Sharma, A.R. Dixit, A.K. Tiwari, A. Pramanik, A. Mandal, Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. J. Clean. Prod. 162, 830–845 (2017)CrossRef R.K. Singh, A.K. Sharma, A.R. Dixit, A.K. Tiwari, A. Pramanik, A. Mandal, Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. J. Clean. Prod. 162, 830–845 (2017)CrossRef
58.
go back to reference A.K. Sharma, A.K. Tiwari, A.R. Dixit, R.K. Singh, M. Singh, Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation. Tribol. Int. 119(September 2017), 99–111 (2018)CrossRef A.K. Sharma, A.K. Tiwari, A.R. Dixit, R.K. Singh, M. Singh, Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation. Tribol. Int. 119(September 2017), 99–111 (2018)CrossRef
59.
go back to reference A.K. Sharma, R.K. Singh, A.R. Dixit, A.K. Tiwari, Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. J. Manuf. Process. 30, 467–482 (2017)CrossRef A.K. Sharma, R.K. Singh, A.R. Dixit, A.K. Tiwari, Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. J. Manuf. Process. 30, 467–482 (2017)CrossRef
60.
go back to reference A.K. Sharma, R.K. Singh, A.R. Dixit, An investigation on tool flank wear using alumina/MoS2 hybrid nanofluid in turning operation, in Advances in Manufacturing Engineering and Materials. Lecture Notes in Mechanical Engineering (Springer, Berlin, 2019), pp. 213–219 A.K. Sharma, R.K. Singh, A.R. Dixit, An investigation on tool flank wear using alumina/MoS2 hybrid nanofluid in turning operation, in Advances in Manufacturing Engineering and Materials. Lecture Notes in Mechanical Engineering (Springer, Berlin, 2019), pp. 213–219
61.
go back to reference A.K. Sharma, J.K. Katiyar, S. Bhaumik, S. Roy, Influence of alumina/MWCNT hybrid nanoparticle additives on tribological properties of lubricants in turning operations. Friction 7(2), 153–168 (2019)CrossRef A.K. Sharma, J.K. Katiyar, S. Bhaumik, S. Roy, Influence of alumina/MWCNT hybrid nanoparticle additives on tribological properties of lubricants in turning operations. Friction 7(2), 153–168 (2019)CrossRef
62.
go back to reference A.K. Sharma, A.K. Tiwari, A.R. Dixit, Prediction of temperature distribution over cutting tool with alumina-MWCNT hybrid nanofluid using computational fluid dynamics (CFD) analysis. Int. J. Adv. Manuf. Technol. 97(1–4), 427–439 (2018)CrossRef A.K. Sharma, A.K. Tiwari, A.R. Dixit, Prediction of temperature distribution over cutting tool with alumina-MWCNT hybrid nanofluid using computational fluid dynamics (CFD) analysis. Int. J. Adv. Manuf. Technol. 97(1–4), 427–439 (2018)CrossRef
63.
go back to reference Y. Hwang et al., Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta 455, 70–74 (2007)CrossRef Y. Hwang et al., Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta 455, 70–74 (2007)CrossRef
64.
go back to reference S. Suresh, K.P. Venkitaraj, P. Selvakumar, Synthesis, characterisation of Al2O3-Cu nano composite powder and water based nanofluids. Adv. Mater. Res. 328–330, 1560–1567 (2011)CrossRef S. Suresh, K.P. Venkitaraj, P. Selvakumar, Synthesis, characterisation of Al2O3-Cu nano composite powder and water based nanofluids. Adv. Mater. Res. 328–330, 1560–1567 (2011)CrossRef
65.
go back to reference H. Zhu, Y. Lin, Y. Yin, A novel one-step chemical method for preparation of copper nanofluids. J. Colloid Interface Sci. 277, 100–103 (2004)CrossRef H. Zhu, Y. Lin, Y. Yin, A novel one-step chemical method for preparation of copper nanofluids. J. Colloid Interface Sci. 277, 100–103 (2004)CrossRef
66.
go back to reference H. Jin, I. Cheol, J. Onoe, Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt. Lasers in Eng. 47, 532–538 (2009) H. Jin, I. Cheol, J. Onoe, Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt. Lasers in Eng. 47, 532–538 (2009)
67.
go back to reference D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications. Particuology 7(2), 141–150 (2009)CrossRef D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications. Particuology 7(2), 141–150 (2009)CrossRef
68.
go back to reference H. Xie et al., Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. 94(8), 4967–4971 (2003) H. Xie et al., Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. 94(8), 4967–4971 (2003)
69.
go back to reference P. Chattopadhyay, R.B. Gupta, Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int. J. Pharm. 228, 19–31 (2001)CrossRef P. Chattopadhyay, R.B. Gupta, Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int. J. Pharm. 228, 19–31 (2001)CrossRef
70.
go back to reference L.S. Sundar, M.K. Singh, M.C. Ferro, A.C.M. Sousa, Experimental investigation of the thermal transport properties of graphene oxide/CO3O4 hybrid nano fluids. Int. Commun. Heat Mass Transf. 84, 1–10 (2017)CrossRef L.S. Sundar, M.K. Singh, M.C. Ferro, A.C.M. Sousa, Experimental investigation of the thermal transport properties of graphene oxide/CO3O4 hybrid nano fluids. Int. Commun. Heat Mass Transf. 84, 1–10 (2017)CrossRef
71.
go back to reference M. Bahrami, M. Akbari, A. Karimipour, M. Afrand, An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-newtonian behavior. Exp. Therm. Fluid Sci. 79, 231–237 (2016)CrossRef M. Bahrami, M. Akbari, A. Karimipour, M. Afrand, An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-newtonian behavior. Exp. Therm. Fluid Sci. 79, 231–237 (2016)CrossRef
72.
go back to reference S.H. Rostamian, M. Biglari, S. Saedodin, M. Hemmat Esfe, An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Mol. Liq. 231, 364–369 (2017)CrossRef S.H. Rostamian, M. Biglari, S. Saedodin, M. Hemmat Esfe, An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Mol. Liq. 231, 364–369 (2017)CrossRef
Metadata
Title
Rheological Behaviour of Hybrid Nanofluids: A Review
Authors
Anuj Kumar Sharma
Rabesh Kumar Singh
Arun Kumar Tiwari
Amit Rai Dixit
Jitendra Kumar Katiyar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-47451-5_4

Premium Partners