Skip to main content
Top
Published in: Journal of Materials Science 1/2018

05-09-2017 | Ceramics

Robocasting of dense yttria-stabilized zirconia structures

Authors: Erwin Peng, Xiangxia Wei, Ulf Garbe, Dehong Yu, Brunet Edouard, Aihong Liu, Jun Ding

Published in: Journal of Materials Science | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advanced ceramic materials with complex design have become inseparable from the current engineering applications. Due to the limitation of traditional ceramic processing, ceramic additive manufacturing (AM) which allows high degree of fabrication freedom has gained significant research interest. Among these AM techniques, low-cost robocasting technique is often considered to fabricate complex ceramic components. In this work, aqueous ceramic suspension comprising of commercial nano-sized yttria-stabilized zirconia (YSZ) powder has been developed for robocasting purpose. Both fully and partially stabilized YSZ green bodies with complex morphologies were successfully printed in ambient conditions using relatively low-solid-content ceramic suspensions (<38 vol%). The sintered structures were able to retain the original morphologies with >94% of the theoretical density despite its high linear shrinkage (up to 33%). The microstructure analysis indicated that dense fully and partially stabilized YSZ with grain size as small as 1.40 ± 0.53 and 0.38 ± 0.10 μm can be obtained, respectively. The sintered partially stabilized YSZ solid and porous mesh samples (porosity of macro-pores >45%) exhibited hardness up to 13.29 GPa and flexural strengths up to 242.8 ± 11.4 and 57.3 ± 5.2 MPa, respectively. The aqueous-based ceramic suspension was also demonstrated to be suitable for the fabrication of large YSZ parts with good repeatability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Belmonte M (2006) Advanced ceramic materials for high temperature applications. Adv Eng Mater 8(8):693–703CrossRef Belmonte M (2006) Advanced ceramic materials for high temperature applications. Adv Eng Mater 8(8):693–703CrossRef
2.
go back to reference Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24(3):289–298CrossRef Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24(3):289–298CrossRef
3.
go back to reference Gautam C, Joyner J, Gautam A, Rao J, Vajtai R (2016) Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans 45(48):19194–19215CrossRef Gautam C, Joyner J, Gautam A, Rao J, Vajtai R (2016) Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans 45(48):19194–19215CrossRef
4.
go back to reference Park J-S, Kim H, Kim I-D (2014) Overview of electroceramic materials for oxide semiconductor thin film transistors. J Electroceram 32(2):117–140CrossRef Park J-S, Kim H, Kim I-D (2014) Overview of electroceramic materials for oxide semiconductor thin film transistors. J Electroceram 32(2):117–140CrossRef
5.
go back to reference Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33(15–16):3243–3248CrossRef Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33(15–16):3243–3248CrossRef
6.
go back to reference Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35(11):819–826CrossRef Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35(11):819–826CrossRef
7.
go back to reference Zhao S, Xiao W, Rahaman MN, O’Brien D, Seitz-Sampson JW, Sonny Bal B (2017) Robocasting of silicon nitride with controllable shape and architecture for biomedical applications. Int J Appl Ceram Technol 14(2):117–127CrossRef Zhao S, Xiao W, Rahaman MN, O’Brien D, Seitz-Sampson JW, Sonny Bal B (2017) Robocasting of silicon nitride with controllable shape and architecture for biomedical applications. Int J Appl Ceram Technol 14(2):117–127CrossRef
8.
go back to reference Cai K, Román-Manso B, Smay JE, Zhou J, Osendi MI, Belmonte M, Miranzo P (2012) Geometrically complex silicon carbide structures fabricated by robocasting. J Am Ceram Soc 95(8):2660–2666CrossRef Cai K, Román-Manso B, Smay JE, Zhou J, Osendi MI, Belmonte M, Miranzo P (2012) Geometrically complex silicon carbide structures fabricated by robocasting. J Am Ceram Soc 95(8):2660–2666CrossRef
9.
go back to reference Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, Qian X, Ma T, Yang Y, Shung K, Chen Y, Zhou Q (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86CrossRef Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, Qian X, Ma T, Yang Y, Shung K, Chen Y, Zhou Q (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86CrossRef
10.
go back to reference Tuttle BA, Smay JE, Cesarano J, Voigt JA, Scofield TW, Olson WR, Lewis JA (2001) Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. J Am Ceram Soc 84(4):872–874CrossRef Tuttle BA, Smay JE, Cesarano J, Voigt JA, Scofield TW, Olson WR, Lewis JA (2001) Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. J Am Ceram Soc 84(4):872–874CrossRef
11.
go back to reference Jakus AE, Taylor SL, Geisendorfer NR, Dunand DC, Shah RN (2015) Metallic architectures from 3D-printed powder-based liquid inks. Adv Func Mater 25(45):6985–6995CrossRef Jakus AE, Taylor SL, Geisendorfer NR, Dunand DC, Shah RN (2015) Metallic architectures from 3D-printed powder-based liquid inks. Adv Func Mater 25(45):6985–6995CrossRef
12.
go back to reference Wei X, Nagarajan RS, Peng E, Xue J, Wang J, Ding J (2016) Fabrication of YBa2Cu3O7−x (YBCO) superconductor bulk structures by extrusion freeforming. Ceram Int 42(14):15836–15842CrossRef Wei X, Nagarajan RS, Peng E, Xue J, Wang J, Ding J (2016) Fabrication of YBa2Cu3O7−x (YBCO) superconductor bulk structures by extrusion freeforming. Ceram Int 42(14):15836–15842CrossRef
13.
go back to reference Tsampas MN, Sapountzi FM, Vernoux P (2015) Applications of yttria stabilized zirconia (YSZ) in catalysis. Catal Sci Technol 5(11):4884–4900CrossRef Tsampas MN, Sapountzi FM, Vernoux P (2015) Applications of yttria stabilized zirconia (YSZ) in catalysis. Catal Sci Technol 5(11):4884–4900CrossRef
14.
go back to reference Devi PS, Sharma AD, Maiti HS (2004) Solid oxide fuel cell materials: a review. Trans Indian Ceram Soc 63(2):75–98CrossRef Devi PS, Sharma AD, Maiti HS (2004) Solid oxide fuel cell materials: a review. Trans Indian Ceram Soc 63(2):75–98CrossRef
15.
go back to reference Porter DL, Evans AG, Heuer AH (1979) Transformation-toughening in partially-stabilized zirconia (PSZ). Acta Metall 27(10):1649–1654CrossRef Porter DL, Evans AG, Heuer AH (1979) Transformation-toughening in partially-stabilized zirconia (PSZ). Acta Metall 27(10):1649–1654CrossRef
16.
go back to reference Durá OJ, López de la Torre MA, Vázquez L, Chaboy J, Boada R, Rivera-Calzada A, Santamaria J, Leon C (2010) Ionic conductivity of nanocrystalline yttria-stabilized zirconia: grain boundary and size effects. Phys Rev B 81(18):184301CrossRef Durá OJ, López de la Torre MA, Vázquez L, Chaboy J, Boada R, Rivera-Calzada A, Santamaria J, Leon C (2010) Ionic conductivity of nanocrystalline yttria-stabilized zirconia: grain boundary and size effects. Phys Rev B 81(18):184301CrossRef
17.
go back to reference Shanti NO, Hovis DB, Seitz ME, Montgomery JK, Baskin DM, Faber KT (2009) Ceramic laminates by gelcasting. Int J Appl Ceram Technol 6(5):593–606CrossRef Shanti NO, Hovis DB, Seitz ME, Montgomery JK, Baskin DM, Faber KT (2009) Ceramic laminates by gelcasting. Int J Appl Ceram Technol 6(5):593–606CrossRef
18.
go back to reference Hotza D, Greil P (1995) Review: aqueous tape casting of ceramic powders. Mater Sci Eng A 202(1):206–217CrossRef Hotza D, Greil P (1995) Review: aqueous tape casting of ceramic powders. Mater Sci Eng A 202(1):206–217CrossRef
19.
go back to reference Mohd Foudzi F, Muhamad N, Bakar Sulong A, Zakaria H (2013) Yttria stabilized zirconia formed by micro ceramic injection molding: rheological properties and debinding effects on the sintered part. Ceram Int 39(3):2665–2674CrossRef Mohd Foudzi F, Muhamad N, Bakar Sulong A, Zakaria H (2013) Yttria stabilized zirconia formed by micro ceramic injection molding: rheological properties and debinding effects on the sintered part. Ceram Int 39(3):2665–2674CrossRef
20.
go back to reference Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609CrossRef Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609CrossRef
21.
go back to reference Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754CrossRef Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754CrossRef
22.
go back to reference Zocca A, Colombo P, Gomes CM, Günster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98(7):1983–2001CrossRef Zocca A, Colombo P, Gomes CM, Günster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98(7):1983–2001CrossRef
23.
go back to reference Qian B, Shen Z (2013) Laser sintering of ceramics. J Asian Ceram Soc 1(4):315–321CrossRef Qian B, Shen Z (2013) Laser sintering of ceramics. J Asian Ceram Soc 1(4):315–321CrossRef
24.
go back to reference Manogharan G, Kioko M, Linkous C (2015) Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation. JOM 67(3):660–667CrossRef Manogharan G, Kioko M, Linkous C (2015) Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation. JOM 67(3):660–667CrossRef
25.
go back to reference Halloran JW (2016) Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res 46(1):19–40CrossRef Halloran JW (2016) Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res 46(1):19–40CrossRef
26.
go back to reference Allahverdi M, Danforth SC, Jafari M, Safari A (2001) Processing of advanced electroceramic components by fused deposition technique. J Eur Ceram Soc 21(10–11):1485–1490CrossRef Allahverdi M, Danforth SC, Jafari M, Safari A (2001) Processing of advanced electroceramic components by fused deposition technique. J Eur Ceram Soc 21(10–11):1485–1490CrossRef
27.
go back to reference Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Technol 209(10):4654–4661CrossRef Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Technol 209(10):4654–4661CrossRef
28.
go back to reference Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Ohman C, Persson C, Ginebra MP (2014) Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2(33):5378–5386CrossRef Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Ohman C, Persson C, Ginebra MP (2014) Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2(33):5378–5386CrossRef
29.
go back to reference Mason MS, Huang T, Landers RG, Leu MC, Hilmas GE (2009) Aqueous-based extrusion of high solids loading ceramic pastes: process modeling and control. J Mater Process Technol 209(6):2946–2957CrossRef Mason MS, Huang T, Landers RG, Leu MC, Hilmas GE (2009) Aqueous-based extrusion of high solids loading ceramic pastes: process modeling and control. J Mater Process Technol 209(6):2946–2957CrossRef
30.
go back to reference Scheithauer U, Schwarzer E, Richter H-J, Moritz T (2015) Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol 12(1):26–31CrossRef Scheithauer U, Schwarzer E, Richter H-J, Moritz T (2015) Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol 12(1):26–31CrossRef
31.
go back to reference Vaidyanathan R, Walish J, Lombardi JL, Kasichainula S, Calvert P, Cooper KC (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37CrossRef Vaidyanathan R, Walish J, Lombardi JL, Kasichainula S, Calvert P, Cooper KC (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37CrossRef
32.
go back to reference Leu MC, Deuser BK, Tang L, Landers RG, Hilmas GE, Watts JL (2012) Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann Manuf Technol 61(1):223–226CrossRef Leu MC, Deuser BK, Tang L, Landers RG, Hilmas GE, Watts JL (2012) Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann Manuf Technol 61(1):223–226CrossRef
33.
go back to reference de Hazan Y, Thänert M, Trunec M, Misak J (2012) Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J Eur Ceram Soc 32(6):1187–1198CrossRef de Hazan Y, Thänert M, Trunec M, Misak J (2012) Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J Eur Ceram Soc 32(6):1187–1198CrossRef
34.
go back to reference Faes M, Valkenaers H, Vogeler F, Vleugels J, Ferraris E (2015) Extrusion-based 3D printing of ceramic components. Procedia CIRP 28:76–81CrossRef Faes M, Valkenaers H, Vogeler F, Vleugels J, Ferraris E (2015) Extrusion-based 3D printing of ceramic components. Procedia CIRP 28:76–81CrossRef
35.
go back to reference Feilden E, Blanca EG-T, Giuliani F, Saiz E, Vandeperre L (2016) Robocasting of structural ceramic parts with hydrogel inks. J Eur Ceram Soc 36(10):2525–2533CrossRef Feilden E, Blanca EG-T, Giuliani F, Saiz E, Vandeperre L (2016) Robocasting of structural ceramic parts with hydrogel inks. J Eur Ceram Soc 36(10):2525–2533CrossRef
36.
go back to reference Lu X, Lee Y, Yang S, Hao Y, Ubic R, Evans JRG, Parini CG (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44CrossRef Lu X, Lee Y, Yang S, Hao Y, Ubic R, Evans JRG, Parini CG (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44CrossRef
37.
go back to reference Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10CrossRef Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10CrossRef
38.
go back to reference Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26(28):5632–5639CrossRef Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26(28):5632–5639CrossRef
39.
go back to reference Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437CrossRef Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437CrossRef
40.
go back to reference Garbe U, Randall T, Hughes C (2011) The new neutron radiography/tomography/imaging station DINGO at OPAL. Nucl Instrum Methods Phys Res Sect A 651(1):42–46CrossRef Garbe U, Randall T, Hughes C (2011) The new neutron radiography/tomography/imaging station DINGO at OPAL. Nucl Instrum Methods Phys Res Sect A 651(1):42–46CrossRef
41.
go back to reference Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83(10):2341–2359CrossRef Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83(10):2341–2359CrossRef
42.
go back to reference Moreno R (2012) Colloidal processing of ceramics and composites. Adv Appl Ceram 111(5-6):246–253CrossRef Moreno R (2012) Colloidal processing of ceramics and composites. Adv Appl Ceram 111(5-6):246–253CrossRef
43.
go back to reference Hidber PC, Graule TJ, Gauckler LJ (1996) Citric acid—a dispersant for aqueous alumina suspensions. J Am Ceram Soc 79(7):1857–1867CrossRef Hidber PC, Graule TJ, Gauckler LJ (1996) Citric acid—a dispersant for aqueous alumina suspensions. J Am Ceram Soc 79(7):1857–1867CrossRef
44.
go back to reference Çınar S, Akinc M (2014) Ascorbic acid as a dispersant for concentrated alumina nanopowder suspensions. J Eur Ceram Soc 34(8):1997–2004CrossRef Çınar S, Akinc M (2014) Ascorbic acid as a dispersant for concentrated alumina nanopowder suspensions. J Eur Ceram Soc 34(8):1997–2004CrossRef
45.
go back to reference Stuecker JN, Cesarano Iii J, Hirschfeld DA (2003) Control of the viscous behavior of highly concentrated mullite suspensions for robocasting. J Mater Process Technol 142(2):318–325CrossRef Stuecker JN, Cesarano Iii J, Hirschfeld DA (2003) Control of the viscous behavior of highly concentrated mullite suspensions for robocasting. J Mater Process Technol 142(2):318–325CrossRef
46.
go back to reference Tekeli S (2007) The solid solubility limit of Al2O3 and its effect on densification and microstructural evolution in cubic-zirconia used as an electrolyte for solid oxide fuel cell. Mater Des 28(2):713–716CrossRef Tekeli S (2007) The solid solubility limit of Al2O3 and its effect on densification and microstructural evolution in cubic-zirconia used as an electrolyte for solid oxide fuel cell. Mater Des 28(2):713–716CrossRef
47.
go back to reference Tekeli S, Demir U (2005) Colloidal processing, sintering and static grain growth behaviour of alumina-doped cubic zirconia. Ceram Int 31(7):973–980CrossRef Tekeli S, Demir U (2005) Colloidal processing, sintering and static grain growth behaviour of alumina-doped cubic zirconia. Ceram Int 31(7):973–980CrossRef
48.
go back to reference Houmard M, Fu Q, Genet M, Saiz E, Tomsia AP (2013) On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101(7):1233–1242CrossRef Houmard M, Fu Q, Genet M, Saiz E, Tomsia AP (2013) On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101(7):1233–1242CrossRef
49.
go back to reference Michorczyk P, Hedrzak E, Wegrzyniak A (2016) Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. J Mater Chem A 4(48):18753–18756CrossRef Michorczyk P, Hedrzak E, Wegrzyniak A (2016) Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. J Mater Chem A 4(48):18753–18756CrossRef
Metadata
Title
Robocasting of dense yttria-stabilized zirconia structures
Authors
Erwin Peng
Xiangxia Wei
Ulf Garbe
Dehong Yu
Brunet Edouard
Aihong Liu
Jun Ding
Publication date
05-09-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1491-x

Other articles of this Issue 1/2018

Journal of Materials Science 1/2018 Go to the issue

Premium Partners