Skip to main content
Top
Published in: Physics of Metals and Metallography 7/2021

01-07-2021 | STRENGTH AND PLASTICITY

Rolling Textures in BCC Metals: A Biaxial Stress Texture Theory and Experiments

Authors: F. Z. Xia, H. B. Sun, H. G. Wei

Published in: Physics of Metals and Metallography | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical properties, such as the tensile anisotropy, of bcc metal sheets are significantly influenced by their rolling textures, so it is important to investigate the texture formation mechanisms in the metals in order to control their textures. A biaxial stress texture theory, which can be used to reveal the texture formation mechanism in bcc metal sheets by analyzing the grain rotation during rolling,—is put forward in this work. With the theory, rolling textures and deformation microstructures in W sheets are studied and it is demonstrated that two stable texture components, namely, (001)[110] and (111)\([1\bar {1}0]\) textures, are formed in the W sheet rolled to a large reduction (92.4%). The two textures can be converted between each other under the action of conjugate slips and cross slip, leading them to be the stable orientations in the W sheets. The deformation microstructures in the W sheets are investigated by trace analysis in a pole figure based on the biaxial stress texture theory, which shows a consistency between the predictions of the theory and experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Yoshihiro, O. Yoshihiro, K. Yasushi, and F. Osamu, “Development of ferritic stainless steel sheets with excellent deep drawability by {1 1 1} recrystallization texture control,“ JSAE Rev. 24, No. 4, 483–488 (2003).CrossRef Y. Yoshihiro, O. Yoshihiro, K. Yasushi, and F. Osamu, “Development of ferritic stainless steel sheets with excellent deep drawability by {1 1 1} recrystallization texture control,“ JSAE Rev. 24, No. 4, 483–488 (2003).CrossRef
2.
go back to reference S. R. Agnew and J. R. Weertman, “The influence of texture on the elastic properties of ultrafine-grain copper,“ Mater. Sci. Eng., A 242, No. 1, 174–180 (1998).CrossRef S. R. Agnew and J. R. Weertman, “The influence of texture on the elastic properties of ultrafine-grain copper,“ Mater. Sci. Eng., A 242, No. 1, 174–180 (1998).CrossRef
3.
go back to reference H. R. Wenk and P. Van Houtte, “Texture and anisotropy,“ Rep. Prog. Phys. 67, No. 8, 1367–1428 (2004).CrossRef H. R. Wenk and P. Van Houtte, “Texture and anisotropy,“ Rep. Prog. Phys. 67, No. 8, 1367–1428 (2004).CrossRef
4.
go back to reference L. A. I. Kestens and H. Pirgazi, “Texture formation in metal alloys with cubic crystal structures,“ Mater. Sci. Technol. 32, No. 13, 1303–1315 (2016).CrossRef L. A. I. Kestens and H. Pirgazi, “Texture formation in metal alloys with cubic crystal structures,“ Mater. Sci. Technol. 32, No. 13, 1303–1315 (2016).CrossRef
5.
go back to reference J. L. Raphanel and P. Van Houtte, “Simulation of the rolling textures of b.c.c. metals by means of the relaxed taylor theory,“ Acta. Metall. 33, No. 8, 1481–1488 (1985).CrossRef J. L. Raphanel and P. Van Houtte, “Simulation of the rolling textures of b.c.c. metals by means of the relaxed taylor theory,“ Acta. Metall. 33, No. 8, 1481–1488 (1985).CrossRef
6.
go back to reference S. H. Lee and D. N. Lee, “Modelling of Deformation Textures of Cold Rolled BCC Metals by the Rate Sensitivity Model,“ Key Eng. Mater. 177–180, 115–120 (2000).CrossRef S. H. Lee and D. N. Lee, “Modelling of Deformation Textures of Cold Rolled BCC Metals by the Rate Sensitivity Model,“ Key Eng. Mater. 177180, 115–120 (2000).CrossRef
7.
go back to reference B. L. Hansen, J. S. Carpenter, S. D. Sintay, and C. A. Bronkhorst, “Modeling the texture evolution of Cu/Nb layered composites during rolling,“ Int. J. Plast. 49, No. 9, 71–84 (2013).CrossRef B. L. Hansen, J. S. Carpenter, S. D. Sintay, and C. A. Bronkhorst, “Modeling the texture evolution of Cu/Nb layered composites during rolling,“ Int. J. Plast. 49, No. 9, 71–84 (2013).CrossRef
8.
go back to reference N. L. Dong, “Relationship between deformation and recrystallisation textures of fcc and bcc metals,“ Philos. Mag. 85, Nos. 2–3, 297–322 (2005).CrossRef N. L. Dong, “Relationship between deformation and recrystallisation textures of fcc and bcc metals,“ Philos. Mag. 85, Nos. 2–3, 297–322 (2005).CrossRef
9.
go back to reference M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,“ Acta. Metall. Mater. 42, No. 3, 879–886 (1994).CrossRef M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,“ Acta. Metall. Mater. 42, No. 3, 879–886 (1994).CrossRef
10.
go back to reference I. L. Dillamore and W. T. Roberts, “Rolling textures in f.c.c. and b.c.c. metals,“ Acta. Metall. 12, No. 3, 281–293 (1964).CrossRef I. L. Dillamore and W. T. Roberts, “Rolling textures in f.c.c. and b.c.c. metals,“ Acta. Metall. 12, No. 3, 281–293 (1964).CrossRef
11.
go back to reference M. Hui, J. Du, R. J. Chen, and J. Liu, “Evolution of texture and magnetic property in Nd–Pr–Fe–B based nanocomposite magnets with plastic deformation,“ IEEE. T. Magn. 51, No. 11, 1–4 (2015). M. Hui, J. Du, R. J. Chen, and J. Liu, “Evolution of texture and magnetic property in Nd–Pr–Fe–B based nanocomposite magnets with plastic deformation,“ IEEE. T. Magn. 51, No. 11, 1–4 (2015).
12.
go back to reference J. Gil Sevillano, C. García-Rosales, and J. Flaquer Fuster, “Texture and large-strain deformation microstructure,“ Philos. Trans. R. Soc. London, A 357, No. 1756, 1603–1619 (1999). J. Gil Sevillano, C. García-Rosales, and J. Flaquer Fuster, “Texture and large-strain deformation microstructure,“ Philos. Trans. R. Soc. London, A 357, No. 1756, 1603–1619 (1999).
13.
go back to reference B. Hutchinson, “Deformation microstructures and textures in steels,“ Philos. Trans. R. Soc. London, A 357, No. 1756, 1471–1485 (1999). B. Hutchinson, “Deformation microstructures and textures in steels,“ Philos. Trans. R. Soc. London, A 357, No. 1756, 1471–1485 (1999).
14.
go back to reference C. S. Hong, X. X. Huang, and G. Winther, “Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminum,“ Philos. Mag. 93, No. 23, 3118–3141 (2015).CrossRef C. S. Hong, X. X. Huang, and G. Winther, “Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminum,“ Philos. Mag. 93, No. 23, 3118–3141 (2015).CrossRef
15.
go back to reference B. Ravi Kumar, A. K. Singh, D. Samar, and D. K. Bhattacharya, “Cold rolling texture in AISI 304 stainless steel,” Mater. Sci. Eng., A 364, No. 1, 132–139 (2004).CrossRef B. Ravi Kumar, A. K. Singh, D. Samar, and D. K. Bhattacharya, “Cold rolling texture in AISI 304 stainless steel,” Mater. Sci. Eng., A 364, No. 1, 132–139 (2004).CrossRef
16.
go back to reference I. L. Dillamore and H. Katoh, “Comparison of the observed and predicted deformation textures in cubic metals,“ Met. Sci. 8, No. 1, 21–27 (1974).CrossRef I. L. Dillamore and H. Katoh, “Comparison of the observed and predicted deformation textures in cubic metals,“ Met. Sci. 8, No. 1, 21–27 (1974).CrossRef
17.
go back to reference G. Winther and X. Huang, „Dislocation structures. Part II. Slip system dependence," Philos. Mag. 87, No. 33, 5215–5235 (2007).CrossRef G. Winther and X. Huang, „Dislocation structures. Part II. Slip system dependence," Philos. Mag. 87, No. 33, 5215–5235 (2007).CrossRef
18.
go back to reference L. W. Johnson, R. D. Riess, and J. T. Arnold, Introduction to Linear Algebra (Addison-Wesley N.Y., New York, 1989), pp. 256–283. L. W. Johnson, R. D. Riess, and J. T. Arnold, Introduction to Linear Algebra (Addison-Wesley N.Y., New York, 1989), pp. 256–283.
19.
go back to reference P. Yang, Electron Backscattering Diffraction Technology and its Application (Metallurgical Industry Press, Bei Jing, 2007), pp. 235–250. P. Yang, Electron Backscattering Diffraction Technology and its Application (Metallurgical Industry Press, Bei Jing, 2007), pp. 235–250.
20.
go back to reference D. C. Hu and M. H. Chen, “Dynamic tensile properties and deformational mechanism of C5191 phosphor bronze,“ Rare. Met. Mater. Eng. 46, No. 6, 1518–1523 (2017).CrossRef D. C. Hu and M. H. Chen, “Dynamic tensile properties and deformational mechanism of C5191 phosphor bronze,“ Rare. Met. Mater. Eng. 46, No. 6, 1518–1523 (2017).CrossRef
21.
go back to reference B. Peeters, M. Seefeldt, C. Teodosiu, S. R. Kalidindi, P. Van Houtte, and E. Aernoudt, “Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress–strain behaviour of an IF steel during two-stage strain paths,“ Acta. Mater. 49, No. 9, 1607–1619 (2001).CrossRef B. Peeters, M. Seefeldt, C. Teodosiu, S. R. Kalidindi, P. Van Houtte, and E. Aernoudt, “Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress–strain behaviour of an IF steel during two-stage strain paths,“ Acta. Mater. 49, No. 9, 1607–1619 (2001).CrossRef
22.
go back to reference K. Máthis, Z. Trojanová, P. Lukáč, C. H. Cáceres, and J. Lendvai, “Modeling of hardening and softening processes in Mg alloys,“ J. Alloy. Compd. 378, No. 1, 176–179 (2004).CrossRef K. Máthis, Z. Trojanová, P. Lukáč, C. H. Cáceres, and J. Lendvai, “Modeling of hardening and softening processes in Mg alloys,“ J. Alloy. Compd. 378, No. 1, 176–179 (2004).CrossRef
Metadata
Title
Rolling Textures in BCC Metals: A Biaxial Stress Texture Theory and Experiments
Authors
F. Z. Xia
H. B. Sun
H. G. Wei
Publication date
01-07-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 7/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21070115

Other articles of this Issue 7/2021

Physics of Metals and Metallography 7/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Model of Primary Recrystallization in Pure Copper