Skip to main content
Top
Published in: Polymer Bulletin 5/2019

22-08-2018 | Review

Ruthenium oxide–carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications

Authors: Murat Ates, Carlos Fernandez

Published in: Polymer Bulletin | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this review article, we have presented for the first time the new applications of supercapacitor technologies and working principles of the family of RuO2–carbon-based nanofiller-reinforced conducting polymer nanocomposites. Our review focuses on pseudocapacitors and symmetric and asymmetric supercapacitors. Over the last years, the supercapacitors as a new technology in energy storage systems have attracted more and more attention. They have some unique characteristics such as fast charge/discharge capability, high energy and power densities, and long stability. However, the need for economic, compatible, and easy synthesis materials for supercapacitors have led to the development of RuO2–carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2. Therefore, the aim of this manuscript was to review RuO2–carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2 over the last 17 years.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo XL, Kuang M, Li F, Liu XY, Zhang YX, Dong F, Losic D (2016) Engineering of three-dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochim Acta 190:159–167CrossRef Guo XL, Kuang M, Li F, Liu XY, Zhang YX, Dong F, Losic D (2016) Engineering of three-dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochim Acta 190:159–167CrossRef
2.
go back to reference Guo XL, Li G, Kuang M, Yu L, Zhang YX (2015) Tailoring Kirkendall effect of the KCu7S4 microwires towards CuO@MnO2 core-shell nanostructures for supercapacitors. Electrochim Acta 174:87–92CrossRef Guo XL, Li G, Kuang M, Yu L, Zhang YX (2015) Tailoring Kirkendall effect of the KCu7S4 microwires towards CuO@MnO2 core-shell nanostructures for supercapacitors. Electrochim Acta 174:87–92CrossRef
3.
go back to reference Patake VD, Lokhande CD, Joo OS (2009) Electrodeposited ruthenium oxide thin films for supercapacitors: effects of surface treatments. Appl Surf Sci 255:4192–4196CrossRef Patake VD, Lokhande CD, Joo OS (2009) Electrodeposited ruthenium oxide thin films for supercapacitors: effects of surface treatments. Appl Surf Sci 255:4192–4196CrossRef
4.
go back to reference Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin pseudocapacitors. Nat Mater 9:146–151CrossRefPubMed Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin pseudocapacitors. Nat Mater 9:146–151CrossRefPubMed
5.
go back to reference Zhao DD, Bao SJ, Zhou WH, Li HL (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874CrossRef Zhao DD, Bao SJ, Zhou WH, Li HL (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874CrossRef
6.
go back to reference Kim IH, Kim KB (2006) Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc 153:A383–A389CrossRef Kim IH, Kim KB (2006) Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc 153:A383–A389CrossRef
7.
go back to reference Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta 52:1742–1748CrossRef Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta 52:1742–1748CrossRef
8.
go back to reference Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRef Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRef
9.
go back to reference Dubal DP, Chodankar NR, Holze R, Kim DH, Gomez-Romero P (2017) Ultrathin mesoporous RuCo2O4 nanoflakes: an advanced electrode for high-performance symmetric supercapacitors. Chemsuschem 10:1771–1782CrossRefPubMed Dubal DP, Chodankar NR, Holze R, Kim DH, Gomez-Romero P (2017) Ultrathin mesoporous RuCo2O4 nanoflakes: an advanced electrode for high-performance symmetric supercapacitors. Chemsuschem 10:1771–1782CrossRefPubMed
10.
go back to reference Bi RB, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114:2448–2451CrossRef Bi RB, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114:2448–2451CrossRef
11.
go back to reference Rakhi RB, Chen W, Hedhili MN, Cha D (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticles decoration. ACS Appl Mater Interfaces 6:4196–4206CrossRefPubMed Rakhi RB, Chen W, Hedhili MN, Cha D (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticles decoration. ACS Appl Mater Interfaces 6:4196–4206CrossRefPubMed
12.
go back to reference Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRef Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRef
13.
go back to reference Nair DP, Sakthivel T, Nivea R, Eshow JS, Gunasekaran V (2015) Effect of surfactants on electrochemical properties of vanadium pentaoxide nanoparticles synthesized via hydrothermal method. J Nanosci Nanotechnol 15:4392–4397CrossRefPubMed Nair DP, Sakthivel T, Nivea R, Eshow JS, Gunasekaran V (2015) Effect of surfactants on electrochemical properties of vanadium pentaoxide nanoparticles synthesized via hydrothermal method. J Nanosci Nanotechnol 15:4392–4397CrossRefPubMed
14.
go back to reference Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X (2015) High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7:1939–1953CrossRef Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X (2015) High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7:1939–1953CrossRef
15.
go back to reference Lei BH, Kong QR, Yang ZH, Yang Y, Wang Y, Pan SL (2016) Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d–p) pi conjugation interactions. J Mater Chem C 4:6295–6301CrossRef Lei BH, Kong QR, Yang ZH, Yang Y, Wang Y, Pan SL (2016) Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d–p) pi conjugation interactions. J Mater Chem C 4:6295–6301CrossRef
16.
go back to reference Borjanovic V, Bistricic L, Pucic I, Mikac L, Slunjski R, Jaksic M, McGuine G, Stankovic AT, Shenderova O (2016) Proton-radiation resistance of poly(ethylene terephthalate)-nanodiamond-graphene nanoplatelet nanocomposites. J Mater Sci 51:1000–1016CrossRef Borjanovic V, Bistricic L, Pucic I, Mikac L, Slunjski R, Jaksic M, McGuine G, Stankovic AT, Shenderova O (2016) Proton-radiation resistance of poly(ethylene terephthalate)-nanodiamond-graphene nanoplatelet nanocomposites. J Mater Sci 51:1000–1016CrossRef
17.
go back to reference Ullah N, McArlhur MA, Omanovic S (2015) Iridium-ruthenium oxide coatings for supercapacitors. Can J Chem Eng 93:1941–1948CrossRef Ullah N, McArlhur MA, Omanovic S (2015) Iridium-ruthenium oxide coatings for supercapacitors. Can J Chem Eng 93:1941–1948CrossRef
18.
go back to reference Hu CC, Chang KH (2000) Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide. Electrochim Acta 45:2685–2696CrossRef Hu CC, Chang KH (2000) Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide. Electrochim Acta 45:2685–2696CrossRef
19.
go back to reference Fisher RA, Watt MR, Jud Ready W (2013) Functionalized carbon nanotubes supercapacitor electrode: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2:M3170–M3177CrossRef Fisher RA, Watt MR, Jud Ready W (2013) Functionalized carbon nanotubes supercapacitor electrode: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2:M3170–M3177CrossRef
20.
go back to reference Liu X, Pickup PG (2008) Ru oxide supercapacitors with high loadings and high power and energy densities. J Power Sources 176:410–416CrossRef Liu X, Pickup PG (2008) Ru oxide supercapacitors with high loadings and high power and energy densities. J Power Sources 176:410–416CrossRef
21.
go back to reference Panic VV, Dekanski AB, Nikolic BZ (2013) Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites. J Serb Chem Soc 78:2141–2164CrossRef Panic VV, Dekanski AB, Nikolic BZ (2013) Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites. J Serb Chem Soc 78:2141–2164CrossRef
22.
go back to reference Lokhande CD, Dubal DP, Joe OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270CrossRef Lokhande CD, Dubal DP, Joe OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270CrossRef
23.
go back to reference Liu CC, Tsai DS, Susanti D, Yeh WC, Huang YS, Liu FJ (2010) Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochim Acta 55:5768–5774CrossRef Liu CC, Tsai DS, Susanti D, Yeh WC, Huang YS, Liu FJ (2010) Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochim Acta 55:5768–5774CrossRef
24.
go back to reference Yang XF, Wang GC, Wang RY, Li XW (2010) A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55:5414–5419CrossRef Yang XF, Wang GC, Wang RY, Li XW (2010) A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55:5414–5419CrossRef
25.
go back to reference Nikolic BZ, Panic VV, Dekanski AB (2012) Intrinsic potential dependent performances of a sol–gel prepared electrocatalytic IrO2–TiO2 coating of dimensionally stable anodes. Electrocatalysis 3:360–368CrossRef Nikolic BZ, Panic VV, Dekanski AB (2012) Intrinsic potential dependent performances of a sol–gel prepared electrocatalytic IrO2–TiO2 coating of dimensionally stable anodes. Electrocatalysis 3:360–368CrossRef
26.
go back to reference Ni Y, Xu J, Liang Q, Shao SJ (2017) Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens Actuators B Chem 250:491–498CrossRef Ni Y, Xu J, Liang Q, Shao SJ (2017) Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens Actuators B Chem 250:491–498CrossRef
27.
go back to reference Yu M, Han Y, Li J, Wang L (2017) One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel composites for energy storage. Chem Eng J 324:287–295CrossRef Yu M, Han Y, Li J, Wang L (2017) One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel composites for energy storage. Chem Eng J 324:287–295CrossRef
28.
go back to reference Yang CC, Tsai MH, Huang CW, Yen PJ, Pan CC, Wu WW, Wei KH, Dung LR, Tseng TY (2017) Carbon nanotube/nitrogen-doped reduced graphene oxide nanocomposites and their application in supercapacitors. J Nanosci Nanotechnol 17:5366–5373CrossRef Yang CC, Tsai MH, Huang CW, Yen PJ, Pan CC, Wu WW, Wei KH, Dung LR, Tseng TY (2017) Carbon nanotube/nitrogen-doped reduced graphene oxide nanocomposites and their application in supercapacitors. J Nanosci Nanotechnol 17:5366–5373CrossRef
29.
go back to reference Yao Z, Meng Y, Xia Q, Li D, Zhao Y, Li C, Jiang Z (2017) Synthesis of carbon modified TiO2 nanotubes composite films by gas thermal penetration as symmetrical and binder-free electrochemical supercapacitor. J. Alloys Compd 721:795–802CrossRef Yao Z, Meng Y, Xia Q, Li D, Zhao Y, Li C, Jiang Z (2017) Synthesis of carbon modified TiO2 nanotubes composite films by gas thermal penetration as symmetrical and binder-free electrochemical supercapacitor. J. Alloys Compd 721:795–802CrossRef
30.
go back to reference Wei YX, Ding RM, Zhang CH, Lv BL, Wang Y, Chen CM, Wang XP, Xu J, Yang Y, Li YW (2017) Facile synthesis of self-assembled ultrathin alpha-FeOOH nanorod/graphene oxide composites for supercapacitors. J Colloid Interface Sci 504:593–602CrossRefPubMed Wei YX, Ding RM, Zhang CH, Lv BL, Wang Y, Chen CM, Wang XP, Xu J, Yang Y, Li YW (2017) Facile synthesis of self-assembled ultrathin alpha-FeOOH nanorod/graphene oxide composites for supercapacitors. J Colloid Interface Sci 504:593–602CrossRefPubMed
31.
go back to reference Bae J, Park JY, Kwan OS, Lee CS (2017) Energy efficient capacitors based on graphene/conducting polymer hybrids. J Ind Eng Chem 51:1–11CrossRef Bae J, Park JY, Kwan OS, Lee CS (2017) Energy efficient capacitors based on graphene/conducting polymer hybrids. J Ind Eng Chem 51:1–11CrossRef
32.
go back to reference Khandare L, Terdale S (2017) Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci 418:22–29CrossRef Khandare L, Terdale S (2017) Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci 418:22–29CrossRef
33.
go back to reference Wang X, Liu P (2014) Improving the electrochemical performance of polyaniline electrode for supercapacitor by chemical oxidative copolymerization with p-phenylene daimine. J Ind Eng Chem 20:1324–1331CrossRef Wang X, Liu P (2014) Improving the electrochemical performance of polyaniline electrode for supercapacitor by chemical oxidative copolymerization with p-phenylene daimine. J Ind Eng Chem 20:1324–1331CrossRef
34.
go back to reference Meng Y, Wang L, Xiao H, Ma Y, Chao L, Xie Q (2016) Facile electrochemical preparation of composite film of ruthenium dioxide and carboxylated graphene for a high performance supercapacitors. RSC Adv 6:33666–33675CrossRef Meng Y, Wang L, Xiao H, Ma Y, Chao L, Xie Q (2016) Facile electrochemical preparation of composite film of ruthenium dioxide and carboxylated graphene for a high performance supercapacitors. RSC Adv 6:33666–33675CrossRef
35.
go back to reference Vellacheri R, Pillai VK, Kurungot S (2012) Hydrous RuO2-carbon nanofiber electrodes with high mass and electrode specific capacitance for efficient energy storage. Nanoscale 4:890–896CrossRefPubMed Vellacheri R, Pillai VK, Kurungot S (2012) Hydrous RuO2-carbon nanofiber electrodes with high mass and electrode specific capacitance for efficient energy storage. Nanoscale 4:890–896CrossRefPubMed
36.
go back to reference Pico F, Ibanez J, Lillo-Rodenas MA, Linares-Solano A, Rojas RM, Amarilla JM, Rojo JM (2008) Understanding RuO2 center dot xH(2)O/carbon nanofiber composites as supercapacitor electrodes. J Power Sources 176:417–425CrossRef Pico F, Ibanez J, Lillo-Rodenas MA, Linares-Solano A, Rojas RM, Amarilla JM, Rojo JM (2008) Understanding RuO2 center dot xH(2)O/carbon nanofiber composites as supercapacitor electrodes. J Power Sources 176:417–425CrossRef
37.
go back to reference Wang P, Liu H, Xu Y, Chen Y, Yang J, Tan Q (2016) Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g−1 for a supercapacitor. Electrochim Acta 194:211–218CrossRef Wang P, Liu H, Xu Y, Chen Y, Yang J, Tan Q (2016) Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g−1 for a supercapacitor. Electrochim Acta 194:211–218CrossRef
38.
go back to reference Shu Y, Xu J, Chen JY, Xu Q, Xiao X, Jin DQ, Pang H, Hu XY (2017) Ultrasensitive electrochemical detection of H2O2 in living cell based on ultrathin MnO2 nanosheets. Sens Actuators B Chem 252:72–78CrossRef Shu Y, Xu J, Chen JY, Xu Q, Xiao X, Jin DQ, Pang H, Hu XY (2017) Ultrasensitive electrochemical detection of H2O2 in living cell based on ultrathin MnO2 nanosheets. Sens Actuators B Chem 252:72–78CrossRef
39.
go back to reference Shao YQ, Chen ZJ, Zhu JQ, Zhang S, Lin DY, Yi ZY, Tang D (2016) Relationship between electronic structures and capacitive performance of the electrode material. J Am Ceram Soc 99:2504–2511CrossRef Shao YQ, Chen ZJ, Zhu JQ, Zhang S, Lin DY, Yi ZY, Tang D (2016) Relationship between electronic structures and capacitive performance of the electrode material. J Am Ceram Soc 99:2504–2511CrossRef
40.
go back to reference Zhang Y, Park SJ (2017) Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon 122:287–297CrossRef Zhang Y, Park SJ (2017) Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon 122:287–297CrossRef
41.
go back to reference Ma HY, Kong DB, Xu Y, Xie XY, Tao Y, Xiao ZC, Lv W, Jang HD, Huang JX, Yang QH (2017) Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, Article number: UNSP1701026 Ma HY, Kong DB, Xu Y, Xie XY, Tao Y, Xiao ZC, Lv W, Jang HD, Huang JX, Yang QH (2017) Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, Article number: UNSP1701026
42.
go back to reference Ambare RC, Bharadwaj SR, Lokhande BJ (2015) Non-aqueous route spray pyrolyzed Ru:Co3O4 thin electrodes for supercapacitor application. Appl Surf Sci 349:887–896CrossRef Ambare RC, Bharadwaj SR, Lokhande BJ (2015) Non-aqueous route spray pyrolyzed Ru:Co3O4 thin electrodes for supercapacitor application. Appl Surf Sci 349:887–896CrossRef
43.
go back to reference Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492CrossRef Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492CrossRef
44.
go back to reference Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510CrossRef Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510CrossRef
45.
go back to reference Wang P, Liu H, Tan Q, Yang J (2014) Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor. RSC Adv 4:42839–42845CrossRef Wang P, Liu H, Tan Q, Yang J (2014) Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor. RSC Adv 4:42839–42845CrossRef
46.
go back to reference Lee H, Cho MS, Nam ID, Lee Y (2010) RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth Met 160:1055–1059CrossRef Lee H, Cho MS, Nam ID, Lee Y (2010) RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth Met 160:1055–1059CrossRef
47.
go back to reference Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMed Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMed
48.
go back to reference Xiang D, Yin L, Wang C, Zhang L (2016) High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111CrossRef Xiang D, Yin L, Wang C, Zhang L (2016) High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111CrossRef
49.
go back to reference Terasawa N, Mukai K, Yamato K, Asaka K (2012) Superior performance of non-activated multi-walled carbon nanotube polymer actuator containing ruthenium oxide over a single-walled carbon nanotubes. Carbon 50:1888–1896CrossRef Terasawa N, Mukai K, Yamato K, Asaka K (2012) Superior performance of non-activated multi-walled carbon nanotube polymer actuator containing ruthenium oxide over a single-walled carbon nanotubes. Carbon 50:1888–1896CrossRef
50.
go back to reference Terasawa N, Asaka K (2014) High-performance hybrid (electrostatic double-layer and faradaic capacitor based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers. Langmuir 30:14343–14351CrossRefPubMed Terasawa N, Asaka K (2014) High-performance hybrid (electrostatic double-layer and faradaic capacitor based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers. Langmuir 30:14343–14351CrossRefPubMed
51.
go back to reference Arabale G, Wagh D, Kulkarni M, Mulla I, Vernekar S, Vijayamoharan K, Rao AM (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376:207–213CrossRef Arabale G, Wagh D, Kulkarni M, Mulla I, Vernekar S, Vijayamoharan K, Rao AM (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376:207–213CrossRef
52.
go back to reference Wang X, Yin Y, Hao C, You Z (2015) A high-performance three-dimensional microsupercapacitor based on ripple-like ruthenium oxide-carbon nanotube composite films. Carbon 82:436–445CrossRef Wang X, Yin Y, Hao C, You Z (2015) A high-performance three-dimensional microsupercapacitor based on ripple-like ruthenium oxide-carbon nanotube composite films. Carbon 82:436–445CrossRef
53.
go back to reference Kim KM, Lee YG, Shin DO, Ko JM (2016) Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochim Acta 196:309–315CrossRef Kim KM, Lee YG, Shin DO, Ko JM (2016) Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochim Acta 196:309–315CrossRef
54.
go back to reference Mortazavi B, Yang HL, Mohebbi F, Cuniberti G, Rabczuk T (2017) Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Appl Energy 202:323–334CrossRef Mortazavi B, Yang HL, Mohebbi F, Cuniberti G, Rabczuk T (2017) Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Appl Energy 202:323–334CrossRef
55.
go back to reference Guldi DM, Rahman GMA, Zerbetto F, Prato M (2005) Carbon nanotubes in electron donor–acceptor nanocomposites. Acc Chem Res 38:871–878CrossRefPubMed Guldi DM, Rahman GMA, Zerbetto F, Prato M (2005) Carbon nanotubes in electron donor–acceptor nanocomposites. Acc Chem Res 38:871–878CrossRefPubMed
56.
go back to reference Vita A, Italiano C, Fabiano C, Pino L, Lagana M, Recupero V (2016) Hydrogen-rich gas production by steam reforming of n-dodecane part I: catalytic activity of Pt/CeO2 catalysts in optimized bed configuration. Appl Catal B Environ 199:350–360CrossRef Vita A, Italiano C, Fabiano C, Pino L, Lagana M, Recupero V (2016) Hydrogen-rich gas production by steam reforming of n-dodecane part I: catalytic activity of Pt/CeO2 catalysts in optimized bed configuration. Appl Catal B Environ 199:350–360CrossRef
57.
go back to reference Achilleos DS, Hatton TA (2015) Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. J Colloid Interface Sci 447:282–301CrossRefPubMed Achilleos DS, Hatton TA (2015) Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. J Colloid Interface Sci 447:282–301CrossRefPubMed
58.
go back to reference Luo X, Yang JY, Yan D, Wang W, Wu X, Zhu ZH (2017) MnO2-decorated 3D porous carbon skeleton devived from mollusc shell for high-performance supercapacitor. J Alloys Compd 723:505–511CrossRef Luo X, Yang JY, Yan D, Wang W, Wu X, Zhu ZH (2017) MnO2-decorated 3D porous carbon skeleton devived from mollusc shell for high-performance supercapacitor. J Alloys Compd 723:505–511CrossRef
59.
go back to reference Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high performance supercapacitors. J Power Sources 245:937–946CrossRef Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high performance supercapacitors. J Power Sources 245:937–946CrossRef
60.
go back to reference Naoi K, Ishimote S, Miyamoto J, Naoi W (2012) Second generation nanohybrid supercapacitor: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373CrossRef Naoi K, Ishimote S, Miyamoto J, Naoi W (2012) Second generation nanohybrid supercapacitor: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373CrossRef
61.
go back to reference Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 17:34–37 Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 17:34–37
62.
go back to reference Xia H, Meng YS, Yuan G, Cui C, Lu L (2012) A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid State Lett 15:A60–A63CrossRef Xia H, Meng YS, Yuan G, Cui C, Lu L (2012) A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid State Lett 15:A60–A63CrossRef
63.
go back to reference Wu Z, Wang D, Ren W, Zhao J, Zhou G, Li F, Cheng H (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRef Wu Z, Wang D, Ren W, Zhao J, Zhou G, Li F, Cheng H (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRef
64.
go back to reference Yousefi T, Golikand AN, Mashhadizadeh MH, Aghazadeh M (2012) Template-free synthesis of MnO2 nanowires with secondary flower like structure: characterization and supercapacitor behavior studies. Curr Appl Phys 12:193–198CrossRef Yousefi T, Golikand AN, Mashhadizadeh MH, Aghazadeh M (2012) Template-free synthesis of MnO2 nanowires with secondary flower like structure: characterization and supercapacitor behavior studies. Curr Appl Phys 12:193–198CrossRef
65.
go back to reference Zhao X, Sanchez BM, Dobson P, Grant P (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRefPubMed Zhao X, Sanchez BM, Dobson P, Grant P (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRefPubMed
66.
go back to reference Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46:1113–1124CrossRefPubMed Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46:1113–1124CrossRefPubMed
67.
go back to reference Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRef Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRef
68.
go back to reference Menna C, Bakis CE, Prota A (2016) Effect of nanofiller length and orientation distributions on mode I fracture toughness of unidirectional fiber composites. J Compos Mater 50:1331–1352CrossRef Menna C, Bakis CE, Prota A (2016) Effect of nanofiller length and orientation distributions on mode I fracture toughness of unidirectional fiber composites. J Compos Mater 50:1331–1352CrossRef
69.
go back to reference Gopinathan J, Pillai MM, Elakkiya V, Selvakumar R, Bhattacharyya A (2016) Carbon nanofiller incorporated electrically conducting poly(elipson-caprolactone) nanocomposite films and their biocompatibility studies using MG-63 cell line. Polym Bull 73:1037–1053CrossRef Gopinathan J, Pillai MM, Elakkiya V, Selvakumar R, Bhattacharyya A (2016) Carbon nanofiller incorporated electrically conducting poly(elipson-caprolactone) nanocomposite films and their biocompatibility studies using MG-63 cell line. Polym Bull 73:1037–1053CrossRef
70.
go back to reference Chen S, Ma W, Xiang H, Cheng Y, Yang S, Weng W, Zhu M (2016) Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J Power Sources 319:271–280CrossRef Chen S, Ma W, Xiang H, Cheng Y, Yang S, Weng W, Zhu M (2016) Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J Power Sources 319:271–280CrossRef
71.
go back to reference Yang KS, Kim CH, Kim BH (2015) Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores. Electrochim Acta 174:290–296CrossRef Yang KS, Kim CH, Kim BH (2015) Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores. Electrochim Acta 174:290–296CrossRef
72.
go back to reference Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Evaluation of the pseudocapacitance in RuO2 with RuO2/GC thin film electrode. Electrochim Acta 49:313–320CrossRef Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Evaluation of the pseudocapacitance in RuO2 with RuO2/GC thin film electrode. Electrochim Acta 49:313–320CrossRef
73.
go back to reference Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4, Article number: 4452 Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4, Article number: 4452
74.
go back to reference Ju YW, Choi GR, Jung HR, Kim C, Yang KS, Lee WJN (2007) A hydrous ruthenium oxide-carbon nanofibers composite electrodes prepared by electrospinning. J Electrochem Soc 154:A192–A197CrossRef Ju YW, Choi GR, Jung HR, Kim C, Yang KS, Lee WJN (2007) A hydrous ruthenium oxide-carbon nanofibers composite electrodes prepared by electrospinning. J Electrochem Soc 154:A192–A197CrossRef
75.
go back to reference Chervin CN, Lubers AM, Long JW, Rolison DR (2010) Effect of temperature and atmosphere on the conductivity and electrochemical capacitance of single-unit thick ruthenium dioxide. J Electroanal Chem 644:155–163CrossRef Chervin CN, Lubers AM, Long JW, Rolison DR (2010) Effect of temperature and atmosphere on the conductivity and electrochemical capacitance of single-unit thick ruthenium dioxide. J Electroanal Chem 644:155–163CrossRef
76.
go back to reference Ryan JV, Berry AD, Anderson ML, Long JW, Stroud RM, Cepak VM (2000) Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature 406:169–172CrossRefPubMed Ryan JV, Berry AD, Anderson ML, Long JW, Stroud RM, Cepak VM (2000) Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature 406:169–172CrossRefPubMed
77.
go back to reference Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760:64–70CrossRef Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760:64–70CrossRef
78.
go back to reference Fam DWH, Azoubel S, Liu L, Huang J, Mandler D, Magdassi S, Tok AIY (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxide. J Mater Sci 50:6578–6585CrossRef Fam DWH, Azoubel S, Liu L, Huang J, Mandler D, Magdassi S, Tok AIY (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxide. J Mater Sci 50:6578–6585CrossRef
79.
go back to reference Liu X, Pickup PG (2011) Carbon fabric supported manganese and ruthenium oxide thin films for supercapacitors. J Electrochem Soc 158:A241–A249CrossRef Liu X, Pickup PG (2011) Carbon fabric supported manganese and ruthenium oxide thin films for supercapacitors. J Electrochem Soc 158:A241–A249CrossRef
80.
go back to reference Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760:64–70CrossRef Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760:64–70CrossRef
81.
go back to reference Zhu Y, Ji X, Pan C, Sun Q, Song W, Fang L, Chen Q, Banks CE (2013) A carbon quantum dot decorated RuO2 network:outstanding supercapacitors under ultrafast charge and discharge. Energy Environ Sci 6:3665–3675CrossRef Zhu Y, Ji X, Pan C, Sun Q, Song W, Fang L, Chen Q, Banks CE (2013) A carbon quantum dot decorated RuO2 network:outstanding supercapacitors under ultrafast charge and discharge. Energy Environ Sci 6:3665–3675CrossRef
82.
go back to reference Bouchard J, Cayla A, Odent S, Lutz V, Devaux E, Campagne C (2016) Processing and characterization of polyethersulfone wet-spun nanocomposite fibres containing mutiwalled carbon nanotubes. Synth Met 217:304–313CrossRef Bouchard J, Cayla A, Odent S, Lutz V, Devaux E, Campagne C (2016) Processing and characterization of polyethersulfone wet-spun nanocomposite fibres containing mutiwalled carbon nanotubes. Synth Met 217:304–313CrossRef
83.
go back to reference Bouchard J, Cayla A, Lutz V, Campagne C, Devaux E (2012) Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning. Text Res J 82:2116–2125CrossRef Bouchard J, Cayla A, Lutz V, Campagne C, Devaux E (2012) Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning. Text Res J 82:2116–2125CrossRef
84.
go back to reference Murakami H, Nakashima N (2006) Soluble carbon nanotubes and their applications. J Nanosci Nanotechnol 6:16–27PubMed Murakami H, Nakashima N (2006) Soluble carbon nanotubes and their applications. J Nanosci Nanotechnol 6:16–27PubMed
85.
go back to reference Nguyen DN, Yoon H (2016) Recent advances in nanostructured coonducting polymers: from synthesis to practical applications. Polymers 8, Article number: 118 Nguyen DN, Yoon H (2016) Recent advances in nanostructured coonducting polymers: from synthesis to practical applications. Polymers 8, Article number: 118
86.
go back to reference Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 3:647–650CrossRef Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 3:647–650CrossRef
87.
go back to reference Shin US, Knowles JC, Kim HW (2011) Positive charge doping on carbon nanotube walls and anion directed tunable dispersion of the derivatives. Bull Korean Chem Soc 32:1635–1639CrossRef Shin US, Knowles JC, Kim HW (2011) Positive charge doping on carbon nanotube walls and anion directed tunable dispersion of the derivatives. Bull Korean Chem Soc 32:1635–1639CrossRef
88.
go back to reference Yoon IIK, Hwang JY, Jang WC, Kim HW, Shin US (2014) Natural bone-like biomimetic surface modification of titanium. Appl Surf Sci 301:401–409CrossRef Yoon IIK, Hwang JY, Jang WC, Kim HW, Shin US (2014) Natural bone-like biomimetic surface modification of titanium. Appl Surf Sci 301:401–409CrossRef
89.
go back to reference Lo AY, Jheng Y, Huang TC, Tseng CM (2015) Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor. Appl Energy 153:15–21CrossRef Lo AY, Jheng Y, Huang TC, Tseng CM (2015) Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor. Appl Energy 153:15–21CrossRef
90.
go back to reference Brown B, Cordova IA, Parker CB, Stone BR, Glass JT (2015) Optimization of active manganase oxide electrodeposits using graphenated carbon nanotube electrodes for supercapacitors. Chem Mater 27:2430–2438CrossRef Brown B, Cordova IA, Parker CB, Stone BR, Glass JT (2015) Optimization of active manganase oxide electrodeposits using graphenated carbon nanotube electrodes for supercapacitors. Chem Mater 27:2430–2438CrossRef
91.
go back to reference Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high performance, flexible planar supercapacitors. Nano Lett 13:2151–2157CrossRefPubMed Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high performance, flexible planar supercapacitors. Nano Lett 13:2151–2157CrossRefPubMed
92.
go back to reference Wu X, Xiong W, Chen Y, Lan D, Pu X, Zeng Y, Gao H, Chen J, Tong H, Zhu Z (2015) High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes. J Power Sources 294:88–93CrossRef Wu X, Xiong W, Chen Y, Lan D, Pu X, Zeng Y, Gao H, Chen J, Tong H, Zhu Z (2015) High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes. J Power Sources 294:88–93CrossRef
93.
go back to reference Li H, Wang R, Cao R (2008) Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercaopacitor. Microporous Mesoporous Mater 111:32–38CrossRef Li H, Wang R, Cao R (2008) Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercaopacitor. Microporous Mesoporous Mater 111:32–38CrossRef
94.
go back to reference Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635CrossRef Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635CrossRef
95.
go back to reference Liu R, Luo Z, Wei Q, Zhou X (2016) Pt-RuO2 nanoparticles supported on diaminoanthraquinone-functionalized carbon nanotubes as efficient catalysts for methanol oxidation. Mater Des 94:132–138CrossRef Liu R, Luo Z, Wei Q, Zhou X (2016) Pt-RuO2 nanoparticles supported on diaminoanthraquinone-functionalized carbon nanotubes as efficient catalysts for methanol oxidation. Mater Des 94:132–138CrossRef
96.
go back to reference Jung CY, Zhao TS, Zeng L, Tan P (2016) Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries. J Power Sources 331:82–90CrossRef Jung CY, Zhao TS, Zeng L, Tan P (2016) Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries. J Power Sources 331:82–90CrossRef
97.
go back to reference Hossain MK, Chowdhury NMR, Hosur M, Jeelani S, Bolden NW (2015) Enhanced properties of epoxy composite reinforced with amino-functionalized graphene nanoplateles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 9, Article number: V009T12A072. Housten, TX, 13–19 Nov 2015 Hossain MK, Chowdhury NMR, Hosur M, Jeelani S, Bolden NW (2015) Enhanced properties of epoxy composite reinforced with amino-functionalized graphene nanoplateles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 9, Article number: V009T12A072. Housten, TX, 13–19 Nov 2015
98.
go back to reference Yang Y, Liang Y, Zhang Y, Zhang Z, Li Z, Hu Z (2015) Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes. New J Chem 39:4035–4040CrossRef Yang Y, Liang Y, Zhang Y, Zhang Z, Li Z, Hu Z (2015) Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes. New J Chem 39:4035–4040CrossRef
99.
go back to reference Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, Ko JM, Kaner RB (2015) Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70CrossRef Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, Ko JM, Kaner RB (2015) Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70CrossRef
100.
go back to reference Leng X, Liu R, Zou J, Xiong X, He H (2016) One-pot hydrothermal synthesis of graphene–RuO2–TiO2 nanocomposites. Mater Lett 166:175–178CrossRef Leng X, Liu R, Zou J, Xiong X, He H (2016) One-pot hydrothermal synthesis of graphene–RuO2–TiO2 nanocomposites. Mater Lett 166:175–178CrossRef
101.
go back to reference Ensafi AA, Jafari-Asl M, Nabiyan A, Rezaei B (2016) Preparation of three-dimensional ruthenium oxide@graphene oxide based on etching of Ni–Al/layered double hydroxides: application for electrochemical hydrogen generation. J Electrochem Soc 163:H610–H617CrossRef Ensafi AA, Jafari-Asl M, Nabiyan A, Rezaei B (2016) Preparation of three-dimensional ruthenium oxide@graphene oxide based on etching of Ni–Al/layered double hydroxides: application for electrochemical hydrogen generation. J Electrochem Soc 163:H610–H617CrossRef
102.
go back to reference Leng X, Zou J, Xiong X, He H (2015) Electrochemical capacitive behavior of RuO2/graphene composites prepared under various precipitation conditions. J Alloys Compd 653:577–584CrossRef Leng X, Zou J, Xiong X, He H (2015) Electrochemical capacitive behavior of RuO2/graphene composites prepared under various precipitation conditions. J Alloys Compd 653:577–584CrossRef
103.
go back to reference Amir FZ, Pham VH, Mullinax DW, Dickerson JH (2016) Enhanced performance of HRGO-RuO2 solid state flexible supercapacitors fabricated by electrophoretic deposition. Carbon 107:338–343CrossRef Amir FZ, Pham VH, Mullinax DW, Dickerson JH (2016) Enhanced performance of HRGO-RuO2 solid state flexible supercapacitors fabricated by electrophoretic deposition. Carbon 107:338–343CrossRef
104.
go back to reference Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015) Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, Article number: 137 Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015) Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, Article number: 137
105.
go back to reference Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:829–840CrossRef Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:829–840CrossRef
106.
go back to reference Sahan N, Fois M, Paksoy H (2015) Improving thermal conductivity phase change materials—a study of parafin nanomagnetite composites. Sol Energy Mater Sol Cells 137:61–67CrossRef Sahan N, Fois M, Paksoy H (2015) Improving thermal conductivity phase change materials—a study of parafin nanomagnetite composites. Sol Energy Mater Sol Cells 137:61–67CrossRef
107.
go back to reference Warzoha RJ, Fleischer AS (2015) Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials. Appl Energy 154:271–276CrossRef Warzoha RJ, Fleischer AS (2015) Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials. Appl Energy 154:271–276CrossRef
108.
go back to reference Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of parafin-based nanocomposite phase change materials. Appl Energy 110:163–172CrossRef Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of parafin-based nanocomposite phase change materials. Appl Energy 110:163–172CrossRef
109.
go back to reference Fan LW, Zhu ZQ, Zeng Y, Xiao YQ, Liu XL, Wu YY, Ding Q, Yu ZT, Cen KF (2015) Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Appl Therm Eng 75:532–540CrossRef Fan LW, Zhu ZQ, Zeng Y, Xiao YQ, Liu XL, Wu YY, Ding Q, Yu ZT, Cen KF (2015) Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Appl Therm Eng 75:532–540CrossRef
110.
go back to reference Zhao ZH, Richardson GF, Meng QS, Zhu SM, Kuan HC, Ma J (2016) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27, Article number: 042001 Zhao ZH, Richardson GF, Meng QS, Zhu SM, Kuan HC, Ma J (2016) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27, Article number: 042001
111.
go back to reference Lean MH, Chu WPL (2016) Effective permittivity of nanocomposites from 3D charge transport simulations. J Appl Polym Sci 133, Article number: 43300 Lean MH, Chu WPL (2016) Effective permittivity of nanocomposites from 3D charge transport simulations. J Appl Polym Sci 133, Article number: 43300
112.
go back to reference Perez LD, Giraldo LF, Brostow W, Lopez BL (2007) Poly(methyl acrylate) plus mesoporous silica nanohybrids: mechanical and thermophysical properties. E-Polymers, Article number: 029 Perez LD, Giraldo LF, Brostow W, Lopez BL (2007) Poly(methyl acrylate) plus mesoporous silica nanohybrids: mechanical and thermophysical properties. E-Polymers, Article number: 029
113.
go back to reference Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015) Fabrication of graphite-graphene ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, Article number: 137 Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015) Fabrication of graphite-graphene ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, Article number: 137
114.
go back to reference Nguyen DN, Yoon H (2016) Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8, Article number: 118 Nguyen DN, Yoon H (2016) Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8, Article number: 118
115.
go back to reference Ahn KJ, Lee Y, Choi H, Kim MS, Im K, Noh S, Yoon H (2015) Surfactant-templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci Rep 5, Article number: 14097 Ahn KJ, Lee Y, Choi H, Kim MS, Im K, Noh S, Yoon H (2015) Surfactant-templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci Rep 5, Article number: 14097
116.
go back to reference Zhang C, Zhou H, Yu X, Ye T, Huang Z, Kuang Y (2014) Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors. RSC Adv 4:11197–11205CrossRef Zhang C, Zhou H, Yu X, Ye T, Huang Z, Kuang Y (2014) Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors. RSC Adv 4:11197–11205CrossRef
117.
go back to reference Liu M, Wang X, Huang Z, Guo P, Wang Z (2017) In-situ solution synthesis of graphene supported lamellar 1T-MoTe2 for enhanced pseuducapacitors. Mater Lett 206:229–232CrossRef Liu M, Wang X, Huang Z, Guo P, Wang Z (2017) In-situ solution synthesis of graphene supported lamellar 1T-MoTe2 for enhanced pseuducapacitors. Mater Lett 206:229–232CrossRef
118.
go back to reference Ye T, Kuang Y, Xie C, Huang Z, Zhang C, Shan D, Zhou H (2014) Enhanced performance by polyaniline/tailored carbon nanotubes composite as supercapacitor electrode material. J Appl Polym Sci 131, Article number: 39971 Ye T, Kuang Y, Xie C, Huang Z, Zhang C, Shan D, Zhou H (2014) Enhanced performance by polyaniline/tailored carbon nanotubes composite as supercapacitor electrode material. J Appl Polym Sci 131, Article number: 39971
119.
go back to reference Sekar P, Anothumakkoel B, Kurungot S (2015) 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. ACS Appl Mater Interfaces 7:7661–7669CrossRefPubMed Sekar P, Anothumakkoel B, Kurungot S (2015) 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. ACS Appl Mater Interfaces 7:7661–7669CrossRefPubMed
120.
go back to reference Chen L, Sun LJ, Luan F, Liang Y, Li Y, Liu XX (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747CrossRef Chen L, Sun LJ, Luan F, Liang Y, Li Y, Liu XX (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747CrossRef
121.
go back to reference Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567CrossRefPubMed Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567CrossRefPubMed
122.
go back to reference Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High performance supercapacitors based on interwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795CrossRefPubMed Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High performance supercapacitors based on interwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795CrossRefPubMed
123.
go back to reference Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623CrossRef Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623CrossRef
124.
go back to reference Hong SC, Kim S, Jong WJ, Jang WJ, Han TH, Hong JP, Oh JS, Hwang T, Lee Y, Lee JH, Nam JD (2004) Supercapacitor characteristics of pressurized RuO2/carbon powder as binder-free electrodes. RSC Adv 4:48276–48284CrossRef Hong SC, Kim S, Jong WJ, Jang WJ, Han TH, Hong JP, Oh JS, Hwang T, Lee Y, Lee JH, Nam JD (2004) Supercapacitor characteristics of pressurized RuO2/carbon powder as binder-free electrodes. RSC Adv 4:48276–48284CrossRef
125.
go back to reference Barbieri O, Hahn M, Foelske A, Kötz R (2006) Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors. J Electrochem Soc 153:A2049–A2054CrossRef Barbieri O, Hahn M, Foelske A, Kötz R (2006) Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors. J Electrochem Soc 153:A2049–A2054CrossRef
126.
go back to reference Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635CrossRef Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635CrossRef
127.
go back to reference Gnerlich M, Ben-Yoav H, Culver JN, Ketchum DR, Ghodssi R (2015) Selective deposition of nanostructured ruthenium oxide using Tobacco masaic virus for micro-supercapacitors in solid Nafion electrolyte. J Power Sources 293:649–656CrossRef Gnerlich M, Ben-Yoav H, Culver JN, Ketchum DR, Ghodssi R (2015) Selective deposition of nanostructured ruthenium oxide using Tobacco masaic virus for micro-supercapacitors in solid Nafion electrolyte. J Power Sources 293:649–656CrossRef
128.
go back to reference Neupane S, Kaganas G, Valenzuela R, Kumari L, Wang XW, Li WZ (2011) Synthesis and characterization of ruthenium dioxide nanostructures. J Mater Sci 46:4803–4811CrossRef Neupane S, Kaganas G, Valenzuela R, Kumari L, Wang XW, Li WZ (2011) Synthesis and characterization of ruthenium dioxide nanostructures. J Mater Sci 46:4803–4811CrossRef
129.
go back to reference Lakshminarayana G, Kityk IV, Nagao T (2016) Synthesis, structural and electrical characterization of RuO2 sol–gel spin-coating nano-films. J Mater Sci Mater Electron 27:10791–10797CrossRef Lakshminarayana G, Kityk IV, Nagao T (2016) Synthesis, structural and electrical characterization of RuO2 sol–gel spin-coating nano-films. J Mater Sci Mater Electron 27:10791–10797CrossRef
130.
go back to reference Cho CJ, Noh MS, Lee WC, An CH, Kang CY, Hwang CS, Kim SK (2017) Ta-doped SnO2 as a reduction-resistant oxide electrode for DRAM capacitors. J Mater Chem C 5:9405–9411CrossRef Cho CJ, Noh MS, Lee WC, An CH, Kang CY, Hwang CS, Kim SK (2017) Ta-doped SnO2 as a reduction-resistant oxide electrode for DRAM capacitors. J Mater Chem C 5:9405–9411CrossRef
131.
go back to reference Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx center dot nH(2)O and activated carbon-RuOx electrodes for supercapacitors. Electrochim Acta 49:3469–3477CrossRef Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx center dot nH(2)O and activated carbon-RuOx electrodes for supercapacitors. Electrochim Acta 49:3469–3477CrossRef
132.
go back to reference Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290CrossRef Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290CrossRef
133.
go back to reference Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMed Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMed
134.
go back to reference Chen MW (2013) Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous Gold. Adv Energy Mater 3:851–856CrossRef Chen MW (2013) Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous Gold. Adv Energy Mater 3:851–856CrossRef
135.
go back to reference Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRefPubMed Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRefPubMed
136.
go back to reference Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834CrossRef Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834CrossRef
137.
go back to reference Ramani M, Haran BS, White RE, Popov BN, Arsov L (2001) Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J Power Sources 93:209–214CrossRef Ramani M, Haran BS, White RE, Popov BN, Arsov L (2001) Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J Power Sources 93:209–214CrossRef
138.
go back to reference Yao Y, Yang Z, Sun H, Wang S (2012) Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind Eng Chem Res 51:14958–14965CrossRef Yao Y, Yang Z, Sun H, Wang S (2012) Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind Eng Chem Res 51:14958–14965CrossRef
139.
go back to reference Hu CC, Huang YH, Chang KH (2002) Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J Power Sources 108:117–127CrossRef Hu CC, Huang YH, Chang KH (2002) Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J Power Sources 108:117–127CrossRef
140.
141.
go back to reference Arnold CB, Wartena RC, Swider-Lyons KE, Pigue A (2003) Direct-write planar microultracapacitors by laser engineering. J Electrochem Soc 150:A571–A575CrossRef Arnold CB, Wartena RC, Swider-Lyons KE, Pigue A (2003) Direct-write planar microultracapacitors by laser engineering. J Electrochem Soc 150:A571–A575CrossRef
142.
go back to reference Sopcic S, Rokovic MK, Mandic Z, Roka A, Inzelt G (2011) Mass changes accompanying the pseudocapacitance of hydrous RuO2 under different experimental conditions. Electrochim Acta 56:3543–3548CrossRef Sopcic S, Rokovic MK, Mandic Z, Roka A, Inzelt G (2011) Mass changes accompanying the pseudocapacitance of hydrous RuO2 under different experimental conditions. Electrochim Acta 56:3543–3548CrossRef
143.
go back to reference Nquyen NL, Rochefort D (2014) Electrochemistry of ruthenium dioxide composite electrodes in diethylmethylammonium-triflate protic ionic liquid and its mixtures with acetonitrile. Electrochim Acta 147:96–103CrossRef Nquyen NL, Rochefort D (2014) Electrochemistry of ruthenium dioxide composite electrodes in diethylmethylammonium-triflate protic ionic liquid and its mixtures with acetonitrile. Electrochim Acta 147:96–103CrossRef
144.
go back to reference Naveen AN, Selladurai S (2015) Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods-PANI composite. Mater Sci Semicond Process 40:468–478CrossRef Naveen AN, Selladurai S (2015) Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods-PANI composite. Mater Sci Semicond Process 40:468–478CrossRef
145.
go back to reference Warren R, Sammoura F, Tounsi F, Sanghadasa M, Lin LW (2015) Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J Mater Chem A 3:15568–15575CrossRef Warren R, Sammoura F, Tounsi F, Sanghadasa M, Lin LW (2015) Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J Mater Chem A 3:15568–15575CrossRef
146.
go back to reference Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu JZ, Kent PRC, Cummings PT, Jiang DE, Wesolowski DJ (2017) Computational insights into materials and interfaces for capacitive energy storage. Adv Sci 4, Article number: 1700059 Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu JZ, Kent PRC, Cummings PT, Jiang DE, Wesolowski DJ (2017) Computational insights into materials and interfaces for capacitive energy storage. Adv Sci 4, Article number: 1700059
147.
go back to reference Park PO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources 134:148–152CrossRef Park PO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources 134:148–152CrossRef
148.
go back to reference Ramani M, Haran BS, White RE, Popov BN, Arsov L (2001) Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J Power Sources 93:209–214CrossRef Ramani M, Haran BS, White RE, Popov BN, Arsov L (2001) Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J Power Sources 93:209–214CrossRef
149.
go back to reference Zubiao W, Shu T, Lili L, Yuping W (2012) Controlled particle size and shape of nanomaterials and their applications in supercapacitors in controlled nanofabrication. Pan Standford Publishing, Singapore, pp 473–519 Zubiao W, Shu T, Lili L, Yuping W (2012) Controlled particle size and shape of nanomaterials and their applications in supercapacitors in controlled nanofabrication. Pan Standford Publishing, Singapore, pp 473–519
150.
go back to reference Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3:13059–13084CrossRef Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3:13059–13084CrossRef
151.
go back to reference Algharaibeh Z, Liu X, Pickup PG (2009) An asymmetric anthraquinone-modified carbon-ruthenium oxide supercapacitor. J Power Sources 187:640–643CrossRef Algharaibeh Z, Liu X, Pickup PG (2009) An asymmetric anthraquinone-modified carbon-ruthenium oxide supercapacitor. J Power Sources 187:640–643CrossRef
152.
go back to reference Makino S, Yamauchi Y, Sugimoto W (2013) Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors. J Power Sources 227:153–160CrossRef Makino S, Yamauchi Y, Sugimoto W (2013) Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors. J Power Sources 227:153–160CrossRef
153.
go back to reference Das B, Behm M, Lindbergh G, Reddy MV, Chowdari BVR (2015) High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Adv Powder Technol 26:783–788CrossRef Das B, Behm M, Lindbergh G, Reddy MV, Chowdari BVR (2015) High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Adv Powder Technol 26:783–788CrossRef
154.
go back to reference Zhang C, Higgins TM, Park SH, O’Brien SE, Long D, Coleman JN, Nicolosi V (2016) Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28:495–505CrossRef Zhang C, Higgins TM, Park SH, O’Brien SE, Long D, Coleman JN, Nicolosi V (2016) Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28:495–505CrossRef
Metadata
Title
Ruthenium oxide–carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications
Authors
Murat Ates
Carlos Fernandez
Publication date
22-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 5/2019
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2492-x

Other articles of this Issue 5/2019

Polymer Bulletin 5/2019 Go to the issue

Premium Partners