Skip to main content
Erschienen in: Polymer Bulletin 4/2016

05.10.2015 | Original Paper

Carbon nanofillers incorporated electrically conducting poly ε-caprolactone nanocomposite films and their biocompatibility studies using MG-63 cell line

verfasst von: J. Gopinathan, Mamatha M. Pillai, V. Elakkiya, R. Selvakumar, Amitava Bhattacharyya

Erschienen in: Polymer Bulletin | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly ε-caprolactone (PCL)-based nanocomposite films were prepared by solvent casting method with different electrically conducting carbon nanofillers like carbon nanofiber (CNF), nanographite and liquid exfoliated graphite. These nanocomposite films show remarkable increase in both surface and bulk electrical conductivity. Continuous network of nanofillers in polymer matrix was observed under high-resolution transmission electron microscopy (HRTEM). The spreading resistance images in AFM showed the presence of nanofillers on the nanocomposite films. These films reveal strong directional effect in electrical conductivity towards longitudinal direction than transverse. PCL film dispersed with 10 % (w/w) CNF showed an electrical conductivity of 19 S/m at longitudinal direction as compared to 1 S/m at transverse direction. This can be best explained with the arrangement of nanofillers along longitudinal direction during solution casting method which is evident from HRTEM images. The electrical conductivity of the nanocomposite films increased in the presence of phosphate buffer saline and simulated body fluid with time. MTT and nuclear staining experiments with osteoblast MG63 cells clearly demonstrated good biocompatibility of these materials. Among all the nanofillers, CNF looks most promising for biomedical applications of PCL-based conducting nanocomposites, as it shows high electrical conductivity and good cell proliferation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lovdal A, Vange J, Nielsen LF, Almdal K (2014) Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions. Biomed Eng Appl Bas Commun 26:1450043CrossRef Lovdal A, Vange J, Nielsen LF, Almdal K (2014) Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions. Biomed Eng Appl Bas Commun 26:1450043CrossRef
2.
Zurück zum Zitat Yuan X, Arkonac DE, Chao PHG, Vunjak-Novakovic G (2014) Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci Rep 4:3674. doi:10.1038/srep03674 Yuan X, Arkonac DE, Chao PHG, Vunjak-Novakovic G (2014) Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci Rep 4:3674. doi:10.​1038/​srep03674
3.
Zurück zum Zitat Asiri AM, Marwani HM, Khan SB, Webster TJ (2014) Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. Int J Nanomed 9:5533 Asiri AM, Marwani HM, Khan SB, Webster TJ (2014) Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. Int J Nanomed 9:5533
4.
Zurück zum Zitat Mattioli-Belmonte M, Giavaresi G, Biagini G, Virgili L, Giacomini M, Fini M, Giantomassi F, Natali D, Torricelli P, Giardino R (2003) Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior. Int J Artif Organs 26(12):1077–1085 Mattioli-Belmonte M, Giavaresi G, Biagini G, Virgili L, Giacomini M, Fini M, Giantomassi F, Natali D, Torricelli P, Giardino R (2003) Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior. Int J Artif Organs 26(12):1077–1085
5.
Zurück zum Zitat Shi G, Zhang Z, Rouabhia M (2008) The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. Biomaterials 29(28):3792–3798CrossRef Shi G, Zhang Z, Rouabhia M (2008) The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. Biomaterials 29(28):3792–3798CrossRef
6.
Zurück zum Zitat Manandhar P, Calvert PD, Buck JR (2012) Elastomeric ionic hydrogel sensor for large strains. IEEE Sens J 12:2052–2061CrossRef Manandhar P, Calvert PD, Buck JR (2012) Elastomeric ionic hydrogel sensor for large strains. IEEE Sens J 12:2052–2061CrossRef
7.
Zurück zum Zitat Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R (2014) A soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–161CrossRef Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R (2014) A soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–161CrossRef
8.
Zurück zum Zitat Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z (2013) Stretchable, transparent, ionic conductors. Science 41:984–987CrossRef Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z (2013) Stretchable, transparent, ionic conductors. Science 41:984–987CrossRef
9.
Zurück zum Zitat Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A (2011) Optically and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244CrossRef Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A (2011) Optically and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244CrossRef
10.
Zurück zum Zitat Wang E, Desai MS, Lee SW (2013) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830CrossRef Wang E, Desai MS, Lee SW (2013) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830CrossRef
11.
Zurück zum Zitat Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRef Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRef
13.
Zurück zum Zitat Hakkarainen M, Albertsson AC, Puglia D (2002) Heterogeneous biodegradation of polycaprolactone-low molecular weight products and surface changes. Macromol Chem Phys 203:1357–1363CrossRef Hakkarainen M, Albertsson AC, Puglia D (2002) Heterogeneous biodegradation of polycaprolactone-low molecular weight products and surface changes. Macromol Chem Phys 203:1357–1363CrossRef
14.
Zurück zum Zitat Mecerreyes D, Stevens R, Nguyen C, Pomposo JA, Bengoetxea M, Grande H (2002) Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers: new electrically conductive nanocomposites. Synth Met 126:173–178CrossRef Mecerreyes D, Stevens R, Nguyen C, Pomposo JA, Bengoetxea M, Grande H (2002) Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers: new electrically conductive nanocomposites. Synth Met 126:173–178CrossRef
15.
Zurück zum Zitat Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high-performance functional textiles. Text Prog 43:155–233CrossRef Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high-performance functional textiles. Text Prog 43:155–233CrossRef
16.
Zurück zum Zitat Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: electrical and thermo-mechanical properties. Expr Polym Lett 7:505CrossRef Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: electrical and thermo-mechanical properties. Expr Polym Lett 7:505CrossRef
17.
Zurück zum Zitat Bhattacharyya A, Joshi M (2011) Development of polyurethane based conducting nanocomposite fibers via twin screw extrusion. Fiber Polym 12:734–740CrossRef Bhattacharyya A, Joshi M (2011) Development of polyurethane based conducting nanocomposite fibers via twin screw extrusion. Fiber Polym 12:734–740CrossRef
18.
Zurück zum Zitat Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718CrossRef Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718CrossRef
19.
Zurück zum Zitat Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRef Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRef
20.
Zurück zum Zitat Martin DJ, Osman AF, Andriani Y, Edwards GA (2012) Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In: Gao F (ed) Advances in polymer nanocomposites: types and applications, 1st edn. Woodhead Publishing, Cambridge, pp 321–350 Martin DJ, Osman AF, Andriani Y, Edwards GA (2012) Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In: Gao F (ed) Advances in polymer nanocomposites: types and applications, 1st edn. Woodhead Publishing, Cambridge, pp 321–350
21.
Zurück zum Zitat Wang J, Sun P, Bao Y, Liu J, An L (2011) Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro 25:242–250CrossRef Wang J, Sun P, Bao Y, Liu J, An L (2011) Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro 25:242–250CrossRef
22.
Zurück zum Zitat Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W Jr, Watanabe F, Mustafa T, Biris AS, Ali SF (2011) Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC 12 cells. ACS Nano 5:7020–7033CrossRef Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W Jr, Watanabe F, Mustafa T, Biris AS, Ali SF (2011) Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC 12 cells. ACS Nano 5:7020–7033CrossRef
23.
Zurück zum Zitat Meng L, Jiang A, Chen R, Li CZ, Wang L, Qu Y, Wang P, Zhao Y, Chen C (2013) Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology 313:49–58CrossRef Meng L, Jiang A, Chen R, Li CZ, Wang L, Qu Y, Wang P, Zhao Y, Chen C (2013) Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology 313:49–58CrossRef
24.
Zurück zum Zitat Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2):635–643CrossRef Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2):635–643CrossRef
25.
Zurück zum Zitat Chen X, Wei S, Yadav A, Patil R, Zhu J, Ximenes R, Sun L, Guo Z (2011) Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties. Macromol Mater Eng 296:434–443CrossRef Chen X, Wei S, Yadav A, Patil R, Zhu J, Ximenes R, Sun L, Guo Z (2011) Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties. Macromol Mater Eng 296:434–443CrossRef
26.
Zurück zum Zitat Bhattacharyya A, Joshi M (2012) Functional properties of microwave-absorbent nanocomposite coatings based on thermoplastic polyurethane-based and hybrid carbon-based nanofillers. Polym Adv Technol 23:975–983CrossRef Bhattacharyya A, Joshi M (2012) Functional properties of microwave-absorbent nanocomposite coatings based on thermoplastic polyurethane-based and hybrid carbon-based nanofillers. Polym Adv Technol 23:975–983CrossRef
27.
Zurück zum Zitat Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350CrossRef
28.
Zurück zum Zitat Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462CrossRef Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462CrossRef
29.
Zurück zum Zitat Coleman JN (2013) Liquid exfoliation of defect-free Graphene. Acc Chem Res 46:14CrossRef Coleman JN (2013) Liquid exfoliation of defect-free Graphene. Acc Chem Res 46:14CrossRef
30.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
31.
Zurück zum Zitat Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614CrossRef Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614CrossRef
32.
Zurück zum Zitat Bao Q, Zhang H, Yang J, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef Bao Q, Zhang H, Yang J, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef
33.
Zurück zum Zitat Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88CrossRef Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88CrossRef
34.
Zurück zum Zitat Price RL, Ellison K, Haberstroh KM (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res 70A:129–138CrossRef Price RL, Ellison K, Haberstroh KM (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res 70A:129–138CrossRef
35.
Zurück zum Zitat Elias KL, Price RL, Webster TJ (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287CrossRef Elias KL, Price RL, Webster TJ (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287CrossRef
36.
Zurück zum Zitat Price RL, Haberstroh KM, Webster TJ (2003) Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput 41:372–375CrossRef Price RL, Haberstroh KM, Webster TJ (2003) Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput 41:372–375CrossRef
37.
Zurück zum Zitat Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24:1877–1887CrossRef Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24:1877–1887CrossRef
38.
Zurück zum Zitat ESD STM 11.11 (2001) Surface resistance measurement of static dissipative planar materials ESD STM 11.11 (2001) Surface resistance measurement of static dissipative planar materials
39.
Zurück zum Zitat Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
40.
Zurück zum Zitat Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro TJ (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res A 24:721CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro TJ (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res A 24:721CrossRef
41.
Zurück zum Zitat Wang J, Fu W, Zhang D, Yu X, Li J (2010) Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydr Polym 79:705–710CrossRef Wang J, Fu W, Zhang D, Yu X, Li J (2010) Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydr Polym 79:705–710CrossRef
42.
Zurück zum Zitat Wan C, Sarem M, Moztarzadeh F, Shastri VP, Mozafari M (2013) Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C 33:4777–4785CrossRef Wan C, Sarem M, Moztarzadeh F, Shastri VP, Mozafari M (2013) Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C 33:4777–4785CrossRef
43.
Zurück zum Zitat Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRef Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRef
44.
Zurück zum Zitat Varela-Rizo H, Montes de Oca G, Rodriguez-Pastor I, Monti M, Terenzi A, Martin-Gullon I (2012) Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Compos Sci Technol 72:218–224CrossRef Varela-Rizo H, Montes de Oca G, Rodriguez-Pastor I, Monti M, Terenzi A, Martin-Gullon I (2012) Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Compos Sci Technol 72:218–224CrossRef
45.
Zurück zum Zitat Ghose S, Watson KA, Working DC, Connell JW, Smith JG, Sun YP (2008) Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends. Compos Sci Technol 68:1843–1853CrossRef Ghose S, Watson KA, Working DC, Connell JW, Smith JG, Sun YP (2008) Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends. Compos Sci Technol 68:1843–1853CrossRef
46.
Zurück zum Zitat Dottori M, Armentano I, Fortunati E, Kenny JM (2010) Production and properties of solvent-cast poly (ε-caprolactone) composites with carbon nanostructures. J Appl Polym Sci 119:3544–3552CrossRef Dottori M, Armentano I, Fortunati E, Kenny JM (2010) Production and properties of solvent-cast poly (ε-caprolactone) composites with carbon nanostructures. J Appl Polym Sci 119:3544–3552CrossRef
47.
Zurück zum Zitat Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, Qiushi R, Chai X (2013) In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil 10:48CrossRef Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, Qiushi R, Chai X (2013) In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil 10:48CrossRef
48.
Zurück zum Zitat Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ (2007) Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 28:4756–4768CrossRef Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ (2007) Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 28:4756–4768CrossRef
49.
Zurück zum Zitat Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–983CrossRef Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–983CrossRef
50.
Zurück zum Zitat Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71CrossRef Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71CrossRef
51.
Zurück zum Zitat Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114CrossRef Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114CrossRef
Metadaten
Titel
Carbon nanofillers incorporated electrically conducting poly ε-caprolactone nanocomposite films and their biocompatibility studies using MG-63 cell line
verfasst von
J. Gopinathan
Mamatha M. Pillai
V. Elakkiya
R. Selvakumar
Amitava Bhattacharyya
Publikationsdatum
05.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2016
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1533-y

Weitere Artikel der Ausgabe 4/2016

Polymer Bulletin 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.