Skip to main content
Top
Published in: Journal of Materials Science 7/2017

23-09-2016 | Batteries and Supercapacitors

Sandwich nanostructured LiMnPO4/C as enhanced cathode materials for lithium-ion batteries

Authors: Xudong Hu, Xiaohong Sun, Ming Yang, Huiming Ji, Xiaolei Li, Shu Cai, Ruisong Guo, Feng Hou, Chunming Zheng, Wenbin Hu

Published in: Journal of Materials Science | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An alternate nanosheet/nanoparticle sandwich nanostructured LiMnPO4 cathode material is successfully synthesized by solvothermal process using oleic acid as the chelating agent. The size of the nanoparticles is as small as ca. 20 nm, which is important to avoid the agglomeration of the nanosheets from overlapping. The carbon-coated LiMnPO4 cathode delivers discharge capacities of 164.9 mAh g−1 at 0.05 C, 159.6 mAh g−1 at 0.1 C, 142.5 mAh g−1 at 0.2 C, and even 77.6 mAh g−1 at 5 C rates, which values are obviously better than those of the counterparts of pure nanosheets. The rate capability and cycle life tests indicate that the sandwich nanostructured LiMnPO4/C cathode material also exhibits an excellent rate and cycle performance. The scanning electron microscopy, transmission electron microscopy, and N2 adsorption–desorption results confirm that the sandwich nanostructured LiMnPO4 with better dispersibility, higher surface area, and broader mesoporous distribution is beneficial to achieve the uniform post carbon-coating morphology and result in the improved electrochemical property. The enhanced electrochemical performances of sandwich nanostructured LiMnPO4/C electrode have also been verified by the electrochemical impedance spectra and electron energy loss spectroscopy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
2.
go back to reference Cheng FY, Tao ZL, Liang J (2008) Chen, J. Template–directed materials for rechargeable lithium–ion batteries. Chem Mater 20:667–681CrossRef Cheng FY, Tao ZL, Liang J (2008) Chen, J. Template–directed materials for rechargeable lithium–ion batteries. Chem Mater 20:667–681CrossRef
3.
go back to reference Liu Q, Li ZF, Liu Y, Zhang H, Ren Y, Sun CL, Lu W, Zhou Y, Stanciu L, Stach EA, Xie J (2015) Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat Commun 6:127 Liu Q, Li ZF, Liu Y, Zhang H, Ren Y, Sun CL, Lu W, Zhou Y, Stanciu L, Stach EA, Xie J (2015) Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat Commun 6:127
4.
go back to reference Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive–electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive–electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
5.
go back to reference Chung SY, Bloking JT, Chiang YM (2002) On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nat Mater 1:702–703CrossRef Chung SY, Bloking JT, Chiang YM (2002) On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nat Mater 1:702–703CrossRef
6.
go back to reference Yoo H, Jo M, Jin BS, Kim HS, Cho J (2011) Flexible morphology design of 3D-macroporous LiMnPO4 cathode materials for Li secondary batteries: ball to flake. Adv Energy Mater 1:347–351CrossRef Yoo H, Jo M, Jin BS, Kim HS, Cho J (2011) Flexible morphology design of 3D-macroporous LiMnPO4 cathode materials for Li secondary batteries: ball to flake. Adv Energy Mater 1:347–351CrossRef
8.
go back to reference Qiu YJ, Geng YH, Yu J, Zuo XB (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509. doi:10.1007/s10853-013-7727-5 CrossRef Qiu YJ, Geng YH, Yu J, Zuo XB (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509. doi:10.​1007/​s10853-013-7727-5 CrossRef
9.
go back to reference Rousse G (2003) Magnetic Structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem Mater 15:4082–4090CrossRef Rousse G (2003) Magnetic Structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem Mater 15:4082–4090CrossRef
10.
go back to reference Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance Carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265CrossRef Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance Carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265CrossRef
11.
go back to reference Ma GF, Peng H, Mu JJ, Huang HH, Zhou XZ, Lei ZQ (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78CrossRef Ma GF, Peng H, Mu JJ, Huang HH, Zhou XZ, Lei ZQ (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78CrossRef
12.
go back to reference Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid St 11:A89–A93CrossRef Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid St 11:A89–A93CrossRef
13.
go back to reference Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2012) Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions. Electrochem Commun 15:22–25CrossRef Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2012) Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions. Electrochem Commun 15:22–25CrossRef
14.
go back to reference Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114CrossRef Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114CrossRef
15.
go back to reference Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRef Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284CrossRef
16.
go back to reference Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef
17.
go back to reference Kim J, Kim H, Park KY, Park YU, Lee S, Kwon HS, Yoo HI, Kang K (2014) Alluaudite LiMnPO4: a new Mn-based positive electrode for Li rechargeable batteries. J Mater Chem A 2:8632–8636CrossRef Kim J, Kim H, Park KY, Park YU, Lee S, Kwon HS, Yoo HI, Kang K (2014) Alluaudite LiMnPO4: a new Mn-based positive electrode for Li rechargeable batteries. J Mater Chem A 2:8632–8636CrossRef
18.
go back to reference Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in Iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in Iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef
19.
go back to reference Cao Y, Duan J, Hu G, Jiang F, Peng Z, Du K, Guo H (2013) Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique. Electrochim Acta 98:183–189CrossRef Cao Y, Duan J, Hu G, Jiang F, Peng Z, Du K, Guo H (2013) Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique. Electrochim Acta 98:183–189CrossRef
20.
go back to reference Fisher CAJ, Prieto VMH, Islam MS (2008) Lithium Battery Materials LiMPO4 (M = Mn, Fe Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chem Mater 20:5907–5915CrossRef Fisher CAJ, Prieto VMH, Islam MS (2008) Lithium Battery Materials LiMPO4 (M = Mn, Fe Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chem Mater 20:5907–5915CrossRef
21.
go back to reference Tang P, Holzwarth NAW (2003) Electronic structure of FePO4, LiFePO4, and related materials. Phys Rev B 68:165107CrossRef Tang P, Holzwarth NAW (2003) Electronic structure of FePO4, LiFePO4, and related materials. Phys Rev B 68:165107CrossRef
22.
go back to reference Meethong N, Kao YH, Tang M, Huang HY, Carter WC, Chiang YM (2008) Electrochemically induced phase transformation in nanoscale olivines Li1-xMPO4 (M = Fe, Mn). Chem Mater 20:6189–6198CrossRef Meethong N, Kao YH, Tang M, Huang HY, Carter WC, Chiang YM (2008) Electrochemically induced phase transformation in nanoscale olivines Li1-xMPO4 (M = Fe, Mn). Chem Mater 20:6189–6198CrossRef
23.
go back to reference Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
24.
go back to reference Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193CrossRef Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193CrossRef
25.
go back to reference Kwon NH, Drezen T, Exnar I, Teerlinck I, Isono M, Graetzel M (2006) Enhanced electrochemical performance of mesoparticulate LiMnPO4 for lithium ion batteries. Electrochem Solid-State Lett 9:A277–A280CrossRef Kwon NH, Drezen T, Exnar I, Teerlinck I, Isono M, Graetzel M (2006) Enhanced electrochemical performance of mesoparticulate LiMnPO4 for lithium ion batteries. Electrochem Solid-State Lett 9:A277–A280CrossRef
26.
go back to reference Wang YR, Yang YF, Yang YB, Shao HX (2010) Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material pepared by solvothermal method. Solid State Commun 150:81–85CrossRef Wang YR, Yang YF, Yang YB, Shao HX (2010) Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material pepared by solvothermal method. Solid State Commun 150:81–85CrossRef
27.
go back to reference Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152CrossRef Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152CrossRef
28.
go back to reference Wang DY, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Graetzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628CrossRef Wang DY, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Graetzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628CrossRef
29.
go back to reference Bakenov Z, Taniguchi I (2010) Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J Power Sources 195:7445–7451CrossRef Bakenov Z, Taniguchi I (2010) Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J Power Sources 195:7445–7451CrossRef
30.
go back to reference Ni J, Gao L (2011) Effect of copper doping on LiMnPO4 prepared via hydrothermal route. J Power Sources 196:6498–6501CrossRef Ni J, Gao L (2011) Effect of copper doping on LiMnPO4 prepared via hydrothermal route. J Power Sources 196:6498–6501CrossRef
31.
go back to reference Ji H, Yang G, Ni H, Roy S, Pinto J, Jiang X (2011) General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route. Electrochim Acta 56:3093–3100CrossRef Ji H, Yang G, Ni H, Roy S, Pinto J, Jiang X (2011) General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route. Electrochim Acta 56:3093–3100CrossRef
32.
go back to reference Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99CrossRef Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99CrossRef
33.
go back to reference Doi T, Yatomi S, Kida T, Okada S, Yamaki JI (2009) Liquid-phase synthesis of uniformly nanosized LiMnPO4 particles and their electrochemical properties for lithium-ion batteries. Cryst Growth Des 9:4990–4992CrossRef Doi T, Yatomi S, Kida T, Okada S, Yamaki JI (2009) Liquid-phase synthesis of uniformly nanosized LiMnPO4 particles and their electrochemical properties for lithium-ion batteries. Cryst Growth Des 9:4990–4992CrossRef
34.
go back to reference Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805CrossRef Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805CrossRef
35.
go back to reference Arun N, Jain A, Aravindan V, Jayaraman S, Ling WC, Srinivasan MP, Madhavi S (2015) Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy 12:69–75CrossRef Arun N, Jain A, Aravindan V, Jayaraman S, Ling WC, Srinivasan MP, Madhavi S (2015) Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy 12:69–75CrossRef
36.
go back to reference Li S, Niu J, Zhao YC, So KP, Wang C, Wang CA, Li J (2015) High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat Commun 6:7872CrossRef Li S, Niu J, Zhao YC, So KP, Wang C, Wang CA, Li J (2015) High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat Commun 6:7872CrossRef
37.
go back to reference Kim Y, Lee JH, Cho S, Kwon Y, In I, Lee J, You NH, Reichmanis E, Ko H, Lee KT, Kwon HK, Ko DH, Yang H, Park B (2014) Additive-free hollow-Structured Co3O4 nanoparticle Li-ion battery: the origins of irreversible capacity loss. ACS Nano 8:6701–6712CrossRef Kim Y, Lee JH, Cho S, Kwon Y, In I, Lee J, You NH, Reichmanis E, Ko H, Lee KT, Kwon HK, Ko DH, Yang H, Park B (2014) Additive-free hollow-Structured Co3O4 nanoparticle Li-ion battery: the origins of irreversible capacity loss. ACS Nano 8:6701–6712CrossRef
38.
go back to reference Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517CrossRef Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517CrossRef
39.
go back to reference Gaberscek M, Dominko R, Jamnik J (2007) Is small particle size more important than carbon coating? an example study on LiFePO4 cathodes. J Electrochem Commun 9:2778–2783CrossRef Gaberscek M, Dominko R, Jamnik J (2007) Is small particle size more important than carbon coating? an example study on LiFePO4 cathodes. J Electrochem Commun 9:2778–2783CrossRef
40.
go back to reference Rangappa D, Sone K, Zhou Y, Kudo T, Honma I (2011) Size and shape controlled LiMnPO4 nanocrystals by a supercritical ethanol process and their electrochemical properties. J Mater Chem 21:15813–15818CrossRef Rangappa D, Sone K, Zhou Y, Kudo T, Honma I (2011) Size and shape controlled LiMnPO4 nanocrystals by a supercritical ethanol process and their electrochemical properties. J Mater Chem 21:15813–15818CrossRef
41.
go back to reference Cao FF, Guo YG, Zheng SF, Wu XL, Jiang LY, Bi RR, Wan LJ, Maier J (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22:1908–1914CrossRef Cao FF, Guo YG, Zheng SF, Wu XL, Jiang LY, Bi RR, Wan LJ, Maier J (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22:1908–1914CrossRef
42.
go back to reference Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef
43.
go back to reference Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153CrossRef Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153CrossRef
44.
go back to reference Fang H, Li L, Yang Y, Yan G, Li G (2008) Carbonate anions controlled morphological evolution of LiMnPO4 crystals. Chem Commun 9:1118–1120CrossRef Fang H, Li L, Yang Y, Yan G, Li G (2008) Carbonate anions controlled morphological evolution of LiMnPO4 crystals. Chem Commun 9:1118–1120CrossRef
45.
go back to reference Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRef Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRef
46.
go back to reference Huang B, Bartholomew CH, Woodfield BF (2014) Improved calculations of pore size distribution for relatively large, irregular slit-shaped mesopore structure. Micropor Mesopor Mat 184:112–121CrossRef Huang B, Bartholomew CH, Woodfield BF (2014) Improved calculations of pore size distribution for relatively large, irregular slit-shaped mesopore structure. Micropor Mesopor Mat 184:112–121CrossRef
47.
go back to reference Lai JP, Niu WX, Luque R, Xu GB (2015) Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10:240–267CrossRef Lai JP, Niu WX, Luque R, Xu GB (2015) Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10:240–267CrossRef
48.
go back to reference Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297CrossRef Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297CrossRef
49.
go back to reference Simon P, Bahrig L, Baburin IA, Formanek P, Roeder F, Sickmann J, Hickey SG, Eychmueller A, Lichte H, Kniep R, Rosseeva E (2014) Interconnection of nanoparticles within 2D superlattices of PbS/Oleic acid thin films. Adv Mater 26:3042–3049CrossRef Simon P, Bahrig L, Baburin IA, Formanek P, Roeder F, Sickmann J, Hickey SG, Eychmueller A, Lichte H, Kniep R, Rosseeva E (2014) Interconnection of nanoparticles within 2D superlattices of PbS/Oleic acid thin films. Adv Mater 26:3042–3049CrossRef
50.
go back to reference Harris RA, Shumbula PM, Walt HVD (2015) Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling. Langmuir 31:3934–3943CrossRef Harris RA, Shumbula PM, Walt HVD (2015) Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling. Langmuir 31:3934–3943CrossRef
51.
go back to reference Zhang H, Jing L, Zeng J, Hou Y, Li Z, Gao M (2014) Revisiting the coordination chemistry for preparing manganese oxide nanocrystals in the presence of oleylamine and oleic acid. Nanoscale 6:5918CrossRef Zhang H, Jing L, Zeng J, Hou Y, Li Z, Gao M (2014) Revisiting the coordination chemistry for preparing manganese oxide nanocrystals in the presence of oleylamine and oleic acid. Nanoscale 6:5918CrossRef
52.
go back to reference Ramar V, Saravanan K, Gajjela SR, Hariharan S, Balaya P (2013) The effect of synthesis parameters on the lithium storage performance of LiMnPO4/C. Electrochim Acta 105:496–505CrossRef Ramar V, Saravanan K, Gajjela SR, Hariharan S, Balaya P (2013) The effect of synthesis parameters on the lithium storage performance of LiMnPO4/C. Electrochim Acta 105:496–505CrossRef
53.
go back to reference Dinh HC, Mho SI, Kang Y, Yeo IH (2013) Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources 244:189–195CrossRef Dinh HC, Mho SI, Kang Y, Yeo IH (2013) Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources 244:189–195CrossRef
54.
go back to reference Sun YK, Oh SM, Park HK, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23:5050–5054CrossRef Sun YK, Oh SM, Park HK, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23:5050–5054CrossRef
55.
go back to reference Fan CF, Barai P, Mukherjee PP (2014) Diffusion induced damage and impedance response in lithium-ion battery electrodes. J Electrochem Soc 161:A2138CrossRef Fan CF, Barai P, Mukherjee PP (2014) Diffusion induced damage and impedance response in lithium-ion battery electrodes. J Electrochem Soc 161:A2138CrossRef
56.
go back to reference Kalnaus S, Rhodes K, Daniel C (2011) A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources 196:8116CrossRef Kalnaus S, Rhodes K, Daniel C (2011) A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources 196:8116CrossRef
57.
go back to reference Hao F, Fang DN (2013) Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J Electrochem Soc 160:A595–A600CrossRef Hao F, Fang DN (2013) Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J Electrochem Soc 160:A595–A600CrossRef
58.
go back to reference Zhang LF, Qu QT, Zhang L, Li J, Zheng HH (2014) Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium ion batteries. J Mater Chem A 2:711–719CrossRef Zhang LF, Qu QT, Zhang L, Li J, Zheng HH (2014) Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium ion batteries. J Mater Chem A 2:711–719CrossRef
59.
go back to reference Luo S, Fang HS, Yang B, Yao YC, Ma WH, Dai DY (2013) Improving rate performance of LiMnPO4 based material by forming electron-conducting iron phosphides. J Power Sources 230:267–270CrossRef Luo S, Fang HS, Yang B, Yao YC, Ma WH, Dai DY (2013) Improving rate performance of LiMnPO4 based material by forming electron-conducting iron phosphides. J Power Sources 230:267–270CrossRef
60.
go back to reference Lecce DD, Hassoun J (2015) Lithium transport properties in LiMn1−αFeαPO4 olivine cathodes. J Phys Chem C 119:20855–20863CrossRef Lecce DD, Hassoun J (2015) Lithium transport properties in LiMn1−αFeαPO4 olivine cathodes. J Phys Chem C 119:20855–20863CrossRef
61.
go back to reference Yang K, Yu XQ, Sun JP, Li H, Huang XJ (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875CrossRef Yang K, Yu XQ, Sun JP, Li H, Huang XJ (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875CrossRef
62.
go back to reference Zhu YJ, Wang CS (2010) Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C 114:2830–2841CrossRef Zhu YJ, Wang CS (2010) Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C 114:2830–2841CrossRef
63.
go back to reference Hong Y, Tang Z, Wang S, Quan W, Zhang Z (2015) High-performance LiMnPO4 nanorods synthesized via a facile EG-assisted solvothermal approach. J Mater Chem A 3:10267–10274CrossRef Hong Y, Tang Z, Wang S, Quan W, Zhang Z (2015) High-performance LiMnPO4 nanorods synthesized via a facile EG-assisted solvothermal approach. J Mater Chem A 3:10267–10274CrossRef
Metadata
Title
Sandwich nanostructured LiMnPO4/C as enhanced cathode materials for lithium-ion batteries
Authors
Xudong Hu
Xiaohong Sun
Ming Yang
Huiming Ji
Xiaolei Li
Shu Cai
Ruisong Guo
Feng Hou
Chunming Zheng
Wenbin Hu
Publication date
23-09-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0417-3

Other articles of this Issue 7/2017

Journal of Materials Science 7/2017 Go to the issue

Premium Partners