Abstract
In the past few decades, energy-storage technology has evolved rapidly as dependence on renewable energy sources have increased due to drastic changes in energy demands. A supercapacitor finds many applications that need high peak power and energy boosts, such as wireless sensor networks, regenerative braking in vehicles, IoT applications, RF transmissions, backup power supply, transport sector, energy harvesting systems, industrial and consumer electronics. Though the lab-scale supercapacitors perform well, there is considerable scope of improvement for commercially scalable supercapacitors. Low-cost, simple-processing, and high-performance material provides a possible solution for large-scale industrial efficient energy storage systems that can bridge the gap between lab-based energy storage technologies and large-scale commercial applications. The performance deteriorates with an increase in the size of devices due to the internal resistances from non-active materials such as binders and additives, and heating issues. To address these challenges, designer electrode structures such as self-standing architectures, mesh-type electrodes, and fractal design can be viable solutions to enhance the performance of large-scale energy storage devices. Industrial byproducts in the form of waste can be recycled and processed to synthesize cost-effective electrode materials. In addition, the fabrication of electrodes by printing techniques and additive nanomanufacturing has gained significant scientific attention as they are cost-effective and economical for the production of energy storage devices. Printing techniques such as inkjet, micro-gravure, and 3D printing possess the merit of easy manufacturing steps to produce scalable supercapacitors.