Skip to main content

2023 | OriginalPaper | Buchkapitel

5. Scalable Supercapacitors

verfasst von : Snehraj Gaur, Ajay B. Urgunde, Gaurav Bahuguna, S. Kiruthika, Ritu Gupta

Erschienen in: Handbook of Nanocomposite Supercapacitor Materials IV

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the past few decades, energy-storage technology has evolved rapidly as dependence on renewable energy sources have increased due to drastic changes in energy demands. A supercapacitor finds many applications that need high peak power and energy boosts, such as wireless sensor networks, regenerative braking in vehicles, IoT applications, RF transmissions, backup power supply, transport sector, energy harvesting systems, industrial and consumer electronics. Though the lab-scale supercapacitors perform well, there is considerable scope of improvement for commercially scalable supercapacitors. Low-cost, simple-processing, and high-performance material provides a possible solution for large-scale industrial efficient energy storage systems that can bridge the gap between lab-based energy storage technologies and large-scale commercial applications. The performance deteriorates with an increase in the size of devices due to the internal resistances from non-active materials such as binders and additives, and heating issues. To address these challenges, designer electrode structures such as self-standing architectures, mesh-type electrodes, and fractal design can be viable solutions to enhance the performance of large-scale energy storage devices. Industrial byproducts in the form of waste can be recycled and processed to synthesize cost-effective electrode materials. In addition, the fabrication of electrodes by printing techniques and additive nanomanufacturing has gained significant scientific attention as they are cost-effective and economical for the production of energy storage devices. Printing techniques such as inkjet, micro-gravure, and 3D printing possess the merit of easy manufacturing steps to produce scalable supercapacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Abbate, E. Saraceno, A. Damasco, in Green Energy Technology, ed. by J. Stagner, D. Ting (Springer Verlag, 2020), pp. 205–243 G. Abbate, E. Saraceno, A. Damasco, in Green Energy Technology, ed. by J. Stagner, D. Ting (Springer Verlag, 2020), pp. 205–243
3.
Zurück zum Zitat M.A. Scibioh, B. Viswanathan, in Material Supercapacitor Application, ed. by M. Scibioh, B. Viswanathan (Elsevier, 2020), pp. 205–314 M.A. Scibioh, B. Viswanathan, in Material Supercapacitor Application, ed. by M. Scibioh, B. Viswanathan (Elsevier, 2020), pp. 205–314
5.
Zurück zum Zitat P. Sundriyal, S. Bhattacharya, ACS Appl. Energy Mater. 2, 1876 (2019)CrossRef P. Sundriyal, S. Bhattacharya, ACS Appl. Energy Mater. 2, 1876 (2019)CrossRef
6.
Zurück zum Zitat E. Taer et al., J. Phys. Conf. Ser. 1116 (2018) E. Taer et al., J. Phys. Conf. Ser. 1116 (2018)
7.
Zurück zum Zitat M.F. El-Kady et al., Proc. Natl. Acad. Sci. U. S. A. 112, 4233 (2015)CrossRef M.F. El-Kady et al., Proc. Natl. Acad. Sci. U. S. A. 112, 4233 (2015)CrossRef
9.
Zurück zum Zitat R. Chen et al., Adv. Energy Mater. 10, 1 (2020) R. Chen et al., Adv. Energy Mater. 10, 1 (2020)
11.
Zurück zum Zitat M. Yaseen et al., Energies 14, 7779 (2021) M. Yaseen et al., Energies 14, 7779 (2021)
13.
15.
Zurück zum Zitat I.S. Ike, I. Sigalas, S. Iyuke, Phys. Chem. Chem. Phys 18, 661 (2016)CrossRef I.S. Ike, I. Sigalas, S. Iyuke, Phys. Chem. Chem. Phys 18, 661 (2016)CrossRef
16.
Zurück zum Zitat Y. Huang et al., npj Flex. Electron. 2 (2018) Y. Huang et al., npj Flex. Electron. 2 (2018)
18.
19.
Zurück zum Zitat X.H. Huang et al., Int. J. Electrochem. Sci. 7, 6611 (2012) X.H. Huang et al., Int. J. Electrochem. Sci. 7, 6611 (2012)
21.
23.
25.
26.
Zurück zum Zitat C. Fu, P.S. Grant, A.C.S. Sustain, Chem. Eng. 3, 2831 (2015) C. Fu, P.S. Grant, A.C.S. Sustain, Chem. Eng. 3, 2831 (2015)
34.
Zurück zum Zitat F.G.F. de Paula et al., Microporous Mesoporous Mater. 267, 181 (2018)CrossRef F.G.F. de Paula et al., Microporous Mesoporous Mater. 267, 181 (2018)CrossRef
35.
Zurück zum Zitat K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials II (Springer Cham, 2020) K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials II (Springer Cham, 2020)
36.
37.
Zurück zum Zitat B.K. Kim et al., in Handbook of Clean Energy System, ed. by J. Yan (John Wiley & Sons, Ltd, Chichester, UK, 2015), pp. 1–25 B.K. Kim et al., in Handbook of Clean Energy System, ed. by J. Yan (John Wiley & Sons, Ltd, Chichester, UK, 2015), pp. 1–25
39.
Zurück zum Zitat A. Sajedi-Moghaddam, E. Rahmanian, N. Naseri, ACS Appl. Mater. Interfaces 12, 34487 (2020)CrossRef A. Sajedi-Moghaddam, E. Rahmanian, N. Naseri, ACS Appl. Mater. Interfaces 12, 34487 (2020)CrossRef
44.
45.
47.
Zurück zum Zitat M.G. Say et al., npj Flex. Electron. 4, 1 (2020) M.G. Say et al., npj Flex. Electron. 4, 1 (2020)
49.
Zurück zum Zitat F. Bu et al., npj Flex. Electron. 4, 1 (2020) F. Bu et al., npj Flex. Electron. 4, 1 (2020)
51.
52.
Zurück zum Zitat K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials I (Springer Cham, 2020) K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials I (Springer Cham, 2020)
54.
55.
57.
Zurück zum Zitat R.L. Li et al., Polymers (Basel) 8, 1 (2016) R.L. Li et al., Polymers (Basel) 8, 1 (2016)
59.
Zurück zum Zitat R. Liang et al., Nanomaterials 11 (2021) R. Liang et al., Nanomaterials 11 (2021)
62.
Zurück zum Zitat J.R. Stevens, Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 38, 518 (1997) J.R. Stevens, Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 38, 518 (1997)
65.
Zurück zum Zitat K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials III (Springer Cham, 2021) K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials III (Springer Cham, 2021)
70.
Zurück zum Zitat D. Antuña-Jiménez et al., in Molecular Imprinted Sensors, ed. by S. Li et al. (Elsevier, 2012), pp. 1–34 D. Antuña-Jiménez et al., in Molecular Imprinted Sensors, ed. by S. Li et al. (Elsevier, 2012), pp. 1–34
72.
Zurück zum Zitat S. Zhang, N. Pan, Adv. Energy Mater. 5 (2015) S. Zhang, N. Pan, Adv. Energy Mater. 5 (2015)
73.
Metadaten
Titel
Scalable Supercapacitors
verfasst von
Snehraj Gaur
Ajay B. Urgunde
Gaurav Bahuguna
S. Kiruthika
Ritu Gupta
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-23701-0_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.