Skip to main content
Top
Published in: Microsystem Technologies 6/2018

16-01-2018 | Technical Paper

Simple fabrication of high focal number micro-lenses based on a microfluid pulse jetting method

Authors: Xiaoyang Zhu, Hongbo Lan, Jianjun Yang, Li Zhu

Published in: Microsystem Technologies | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we demonstrate a simple and rapid high focal number (F # ) micro-lens (ML) fabrication method using a simple microfluid pulse jetting technology. The simulation of the microfluid pulse jetting is firstly studied to prove that the new jetting method have the potential for jetting the UV polymer with a low surface tension coefficient stably. As the high F # of the ML is ascribed to the low contact angle of the ML on the substrate, a simple surface treatment of the substrate is adopted to obtain a small contact angle of the UV polymer on the substrate. Based on this method, the spherical ML and cylindrical ML with a F # as high as 11.5 have been successfully fabricated. The fabricated high F # ML is characterized through simulating the modulation transfer function curve, wavefront aberration, and point spread function (PSF) and measuring the PSF and imaging effect, and the simulation and measurement results indicate that the diffraction limit optical performance of the high F # ML can be achieved and the clear images can be observed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ahmed R, Yetisen AK, Butt H (2017) High numerical aperture hexagonal stacked ring-based bidirectional flexible polymer microlens array. ACS Nano 11(3):3155–3165CrossRef Ahmed R, Yetisen AK, Butt H (2017) High numerical aperture hexagonal stacked ring-based bidirectional flexible polymer microlens array. ACS Nano 11(3):3155–3165CrossRef
go back to reference Ares M, Royo S, Caum J (2007) Shack-Hartmann sensor based on a cylindrical microlens array. Opt Lett 32(7):769–771CrossRef Ares M, Royo S, Caum J (2007) Shack-Hartmann sensor based on a cylindrical microlens array. Opt Lett 32(7):769–771CrossRef
go back to reference Bi X, Li W (2015) Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. J Mater Chem C 3(22):5825–5834CrossRef Bi X, Li W (2015) Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. J Mater Chem C 3(22):5825–5834CrossRef
go back to reference Bian R, Xiong Y, Chen X et al (2015) Ultralong focal length microlens array fabricated based on SU-8 photoresist. Appl Opt 54(16):5088–5093CrossRef Bian R, Xiong Y, Chen X et al (2015) Ultralong focal length microlens array fabricated based on SU-8 photoresist. Appl Opt 54(16):5088–5093CrossRef
go back to reference Chang CY, Tsai MH (2015) Development of a continuous roll-to-roll processing system for mass production of plastic optical film. J Micromech Microeng 25(12):125014CrossRef Chang CY, Tsai MH (2015) Development of a continuous roll-to-roll processing system for mass production of plastic optical film. J Micromech Microeng 25(12):125014CrossRef
go back to reference Chang CY, Yu CH (2015) A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays. J Micromech Microeng 25(2):025010MathSciNetCrossRef Chang CY, Yu CH (2015) A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays. J Micromech Microeng 25(2):025010MathSciNetCrossRef
go back to reference Chen L, Kirchberg S, Jiang BY et al (2014) Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes. Appl Opt 53(31):7369–7380CrossRef Chen L, Kirchberg S, Jiang BY et al (2014) Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes. Appl Opt 53(31):7369–7380CrossRef
go back to reference Choi HK, Ahsan MS, Yoo D et al (2015) Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique. Opt Laser Technol 75:63–70CrossRef Choi HK, Ahsan MS, Yoo D et al (2015) Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique. Opt Laser Technol 75:63–70CrossRef
go back to reference Cox WR, Hayes DJ, Chen T et al (1995) Fabrication of micro-optics by microjet printing. Micro-Opt Micromech Laser Scanning Shap Int Soc Opt Photon 2383:110–116 Cox WR, Hayes DJ, Chen T et al (1995) Fabrication of micro-optics by microjet printing. Micro-Opt Micromech Laser Scanning Shap Int Soc Opt Photon 2383:110–116
go back to reference Cox WR, Chen T, Guan C et al (1998) Micro-jet printing of refractive microlenses. In: Proc. OSA Diffract. Opt. Micro-opt. Topical Mtg Cox WR, Chen T, Guan C et al (1998) Micro-jet printing of refractive microlenses. In: Proc. OSA Diffract. Opt. Micro-opt. Topical Mtg
go back to reference Deng Z, Chen F, Yang Q et al (2012) A facile method to fabricate close-packed concave microlens array on cylindrical glass. J Micromech Microeng 22(11):115026CrossRef Deng Z, Chen F, Yang Q et al (2012) A facile method to fabricate close-packed concave microlens array on cylindrical glass. J Micromech Microeng 22(11):115026CrossRef
go back to reference Deng Z, Yang Q, Chen F et al (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40(9):1928–1931CrossRef Deng Z, Yang Q, Chen F et al (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40(9):1928–1931CrossRef
go back to reference Dong BZ, Liu J, Gu BY et al (2001) Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution. JOSA A 18(7):1465–1470CrossRef Dong BZ, Liu J, Gu BY et al (2001) Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution. JOSA A 18(7):1465–1470CrossRef
go back to reference Fakhfouri V, Cantale N, Mermoud G et al (2008) Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses. In: IEEE 21st International conference on micro electro mechanical systems, MEMS 2008. IEEE, pp 407–410 Fakhfouri V, Cantale N, Mermoud G et al (2008) Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses. In: IEEE 21st International conference on micro electro mechanical systems, MEMS 2008. IEEE, pp 407–410
go back to reference Gex F, Horville D, Lelievre G et al (1996) Improvement of a manufacturing technique for long focal length microlens arrays. Pure Appl Opt 5(6):863CrossRef Gex F, Horville D, Lelievre G et al (1996) Improvement of a manufacturing technique for long focal length microlens arrays. Pure Appl Opt 5(6):863CrossRef
go back to reference Hsieh HT, Su GDJ (2010) A novel boundary-confined method for high numerical aperture microlens array fabrication. J Micromech Microeng 20(3):035023CrossRef Hsieh HT, Su GDJ (2010) A novel boundary-confined method for high numerical aperture microlens array fabrication. J Micromech Microeng 20(3):035023CrossRef
go back to reference Hsieh HT, Lin V, Hsieh JL et al (2011) Design and fabrication of long focal length microlens arrays. Opt Commun 284(21):5225–5230CrossRef Hsieh HT, Lin V, Hsieh JL et al (2011) Design and fabrication of long focal length microlens arrays. Opt Commun 284(21):5225–5230CrossRef
go back to reference Jacot-Descombes L, Gullo MR, Cadarso VJ et al (2012) Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. J Micromech Microeng 22(7):074012CrossRef Jacot-Descombes L, Gullo MR, Cadarso VJ et al (2012) Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. J Micromech Microeng 22(7):074012CrossRef
go back to reference Jeong KH, Lee LP (2002) A new method of increasing numerical aperture of microlens for biophotonic MEMS. In: Second annual international IEEE-EMB special topic conference on microtechnologies in medicine and biology. IEEE, pp 380–383 Jeong KH, Lee LP (2002) A new method of increasing numerical aperture of microlens for biophotonic MEMS. In: Second annual international IEEE-EMB special topic conference on microtechnologies in medicine and biology. IEEE, pp 380–383
go back to reference Jucius D, Grigaliūnas V, Lazauskas A et al (2017) Effect of fused silica surface wettability on thermal reflow of polymer microlens arrays. Microsyst Technol 23(6):2193–2206CrossRef Jucius D, Grigaliūnas V, Lazauskas A et al (2017) Effect of fused silica surface wettability on thermal reflow of polymer microlens arrays. Microsyst Technol 23(6):2193–2206CrossRef
go back to reference Kim JY, Brauer NB, Fakhfouri V et al (2011) Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique. Opt Mater Express 1(2):259–269CrossRef Kim JY, Brauer NB, Fakhfouri V et al (2011) Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique. Opt Mater Express 1(2):259–269CrossRef
go back to reference Kim JY, Pfeiffer K, Voigt A et al (2012) Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J Mater Chem 22(7):3053–3058CrossRef Kim JY, Pfeiffer K, Voigt A et al (2012) Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J Mater Chem 22(7):3053–3058CrossRef
go back to reference Kong LB, Cheung CF (2012) Modeling and characterization of surface generation in fast tool servo machining of microlens arrays. Comput Ind Eng 63(4):957–970CrossRef Kong LB, Cheung CF (2012) Modeling and characterization of surface generation in fast tool servo machining of microlens arrays. Comput Ind Eng 63(4):957–970CrossRef
go back to reference Kuo JN, Hsieh CC, Yang SY et al (2007) An SU-8 microlens array fabricated by soft replica molding for cell counting applications. J Micromech Microeng 17(4):693CrossRef Kuo JN, Hsieh CC, Yang SY et al (2007) An SU-8 microlens array fabricated by soft replica molding for cell counting applications. J Micromech Microeng 17(4):693CrossRef
go back to reference Li ZA (2014) Digital droplet micro-jetting prepared microfluidic chip technology and its experimental research. Nanjing University of Science and Technology Li ZA (2014) Digital droplet micro-jetting prepared microfluidic chip technology and its experimental research. Nanjing University of Science and Technology
go back to reference Li X, Ding Y, Shao J et al (2012) Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater 24(23):165 Li X, Ding Y, Shao J et al (2012) Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater 24(23):165
go back to reference Li P, Pei J, Pan L et al (2014) Fabrication method of low f-number microlens arrays by using surface coating and epoxy dispensing technology. J Micro/Nanolithogr MEMS MOEMS 13(2):023004CrossRef Li P, Pei J, Pan L et al (2014) Fabrication method of low f-number microlens arrays by using surface coating and epoxy dispensing technology. J Micro/Nanolithogr MEMS MOEMS 13(2):023004CrossRef
go back to reference Lin V, Wei HC, Hsieh HT et al (2011) An optical wavefront sensor based on a double layer microlens array. Sensors 11(11):10293–10307CrossRef Lin V, Wei HC, Hsieh HT et al (2011) An optical wavefront sensor based on a double layer microlens array. Sensors 11(11):10293–10307CrossRef
go back to reference Lu DX, Zhang YL, Han DD et al (2015) Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. J Mater Chem C 3(8):1751–1756CrossRef Lu DX, Zhang YL, Han DD et al (2015) Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. J Mater Chem C 3(8):1751–1756CrossRef
go back to reference Luo Z, Duan J, Guo C (2017) Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt Lett 42(12):2358–2361CrossRef Luo Z, Duan J, Guo C (2017) Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt Lett 42(12):2358–2361CrossRef
go back to reference Ottevaere H, Cox R, Herzig HP et al (2006) Comparing glass and plastic refractive microlenses fabricated with different technologies. J Opt A: Pure Appl Opt 8(7):S407CrossRef Ottevaere H, Cox R, Herzig HP et al (2006) Comparing glass and plastic refractive microlenses fabricated with different technologies. J Opt A: Pure Appl Opt 8(7):S407CrossRef
go back to reference Pericet-Camara R, Best A, Nett SK et al (2007) Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device. Opt Express 15(15):9877–9882CrossRef Pericet-Camara R, Best A, Nett SK et al (2007) Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device. Opt Express 15(15):9877–9882CrossRef
go back to reference Poon PCH, Commander LG, Selviah DR et al (1999) Extension of the useful focal length range of microlenses by oil immersion. J Opt A 1(2):133CrossRef Poon PCH, Commander LG, Selviah DR et al (1999) Extension of the useful focal length range of microlenses by oil immersion. J Opt A 1(2):133CrossRef
go back to reference Popovic ZD, Sprague RA, Connell GAN (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284CrossRef Popovic ZD, Sprague RA, Connell GAN (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284CrossRef
go back to reference Sutanto E, Tan Y, Onses MS et al (2014) Electrohydrodynamic jet printing of micro-optical devices. Manuf Lett 2(1):4–7CrossRef Sutanto E, Tan Y, Onses MS et al (2014) Electrohydrodynamic jet printing of micro-optical devices. Manuf Lett 2(1):4–7CrossRef
go back to reference Vespini V, Coppola S, Todino M et al (2016) Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab Chip 16(2):326–333CrossRef Vespini V, Coppola S, Todino M et al (2016) Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab Chip 16(2):326–333CrossRef
go back to reference Voigt A, Ostrzinski U, Pfeiffer K et al (2011) New inks for the direct drop-on-demand fabrication of polymer lenses. Microelectron Eng 88(8):2174–2179CrossRef Voigt A, Ostrzinski U, Pfeiffer K et al (2011) New inks for the direct drop-on-demand fabrication of polymer lenses. Microelectron Eng 88(8):2174–2179CrossRef
go back to reference Wang M, Yu W, Wang T et al (2015) A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number. RSC Adv 5(44):35311–35316CrossRef Wang M, Yu W, Wang T et al (2015) A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number. RSC Adv 5(44):35311–35316CrossRef
go back to reference Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low F-number. J Comp Physiol A 168(4):499–512CrossRef Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low F-number. J Comp Physiol A 168(4):499–512CrossRef
go back to reference Xie D, Zhang H, Shu X et al (2012) Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology. Opt Express 20(14):15186–15195CrossRef Xie D, Zhang H, Shu X et al (2012) Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology. Opt Express 20(14):15186–15195CrossRef
go back to reference Xie D, Chang X, Shu X et al (2015) Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology. Opt Express 23(4):5154–5166CrossRef Xie D, Chang X, Shu X et al (2015) Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology. Opt Express 23(4):5154–5166CrossRef
go back to reference Xie D, Chang X, Shu X et al (2016) Replication of thermoplastic polymer spherical lens array using microforged molding technique. Opt Express 24(26):30264–30274CrossRef Xie D, Chang X, Shu X et al (2016) Replication of thermoplastic polymer spherical lens array using microforged molding technique. Opt Express 24(26):30264–30274CrossRef
go back to reference Xing J, Rong W, Sun D et al (2016) Extrusion printing for fabrication of spherical and cylindrical microlens arrays. Appl Opt 55(25):6947–6952CrossRef Xing J, Rong W, Sun D et al (2016) Extrusion printing for fabrication of spherical and cylindrical microlens arrays. Appl Opt 55(25):6947–6952CrossRef
go back to reference Ye JS, Mei GA, Zheng XH et al (2012) Long-focal-depth cylindrical microlens with flat axial intensity distributions. J Modern Opt 59(1):90–94CrossRef Ye JS, Mei GA, Zheng XH et al (2012) Long-focal-depth cylindrical microlens with flat axial intensity distributions. J Modern Opt 59(1):90–94CrossRef
go back to reference Yoon GY, Jitsuno T, Nakatsuka M et al (1996) Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Appl Opt 35(1):188–192CrossRef Yoon GY, Jitsuno T, Nakatsuka M et al (1996) Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Appl Opt 35(1):188–192CrossRef
go back to reference Zhu X, Zhu L, Chen H et al (2015a) Fabrication of multi-scale micro-lens arrays on hydrophobic surfaces using a drop-on-demand droplet generator. Opt Laser Technol 66:156–165CrossRef Zhu X, Zhu L, Chen H et al (2015a) Fabrication of multi-scale micro-lens arrays on hydrophobic surfaces using a drop-on-demand droplet generator. Opt Laser Technol 66:156–165CrossRef
go back to reference Zhu X, Zhu L, Chen H et al (2015b) Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Opt Laser Technol 68:23–27CrossRef Zhu X, Zhu L, Chen H et al (2015b) Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Opt Laser Technol 68:23–27CrossRef
Metadata
Title
Simple fabrication of high focal number micro-lenses based on a microfluid pulse jetting method
Authors
Xiaoyang Zhu
Hongbo Lan
Jianjun Yang
Li Zhu
Publication date
16-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 6/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3721-9

Other articles of this Issue 6/2018

Microsystem Technologies 6/2018 Go to the issue