Skip to main content
Top
Published in: Strength of Materials 4/2015

01-07-2015

Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions

Author: H. Haeri

Published in: Strength of Materials | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanism of crack propagation in concrete specimens containing cracks under shear loading conditions is studied. The shear box test of pre-cracked (double edge cracks) concrete specimens is carried out under laboratory conditions. The higher order displacement discontinuity formulation and the special crack tip elements for the treatment of crack ends is used to numerically simulate the crack propagation mechanism of brittle solids under direct shear loading. A special modeling technique is also proposed to take into account the effect of crack overlapping on the fracturing process of the bridge area in between the two parallel cracks. In this study, the wing cracks are produced at the first stage of loading and continued their propagation paths toward the shear loading direction. The crack propagation path of the double edge cracked specimens in the bridge area is mostly affected by ligament angles and crack length whereas the shear strength is closely related to the failure pattern. The coalescence mechanism of cracks indicated that the pre-cracked concrete failure occurs in mixed mode in case of non-overlapping cracks configuration and in tensile mode for the overlapping cracks. Finally, comparing the numerical and experimental results validated the crack propagation modeling and verified the accuracy and efficiency of the proposed numerical method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).CrossRef H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).CrossRef
2.
go back to reference N. R. Barton, “Review of a new shear strength criterion for rock joints,” Eng. Geol., 7, 287–332 (1973).CrossRef N. R. Barton, “Review of a new shear strength criterion for rock joints,” Eng. Geol., 7, 287–332 (1973).CrossRef
3.
go back to reference B. Ladany and G. Archambault, “Simulation of shear behavior of a jointed rock mass,” in: Proc. of the 11th Symp. Rock Mechanics (ATME) (1970), pp. 105–125. B. Ladany and G. Archambault, “Simulation of shear behavior of a jointed rock mass,” in: Proc. of the 11th Symp. Rock Mechanics (ATME) (1970), pp. 105–125.
4.
go back to reference Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Part II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, No. 4, 407–423 (1967). Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Part II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, No. 4, 407–423 (1967).
5.
go back to reference A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).CrossRef A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).CrossRef
6.
go back to reference A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998b).CrossRef A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998b).CrossRef
7.
go back to reference T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300. T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300.
8.
go back to reference R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest, Swets & Zeitlinger Lisse, Leiden (2001), pp. 843–849. R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest, Swets & Zeitlinger Lisse, Leiden (2001), pp. 843–849.
9.
go back to reference C. Gehle and H. K. Kutter, “Breakage and shear behavior of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).CrossRef C. Gehle and H. K. Kutter, “Breakage and shear behavior of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).CrossRef
10.
go back to reference A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Lisbon, Portugal (2007). A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Lisbon, Portugal (2007).
11.
go back to reference A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2011). A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2011).
12.
go back to reference V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2013), doi: 10.1007/s00603-013-0450-3.CrossRef V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2013), doi: 10.​1007/​s00603-013-0450-3.CrossRef
13.
go back to reference K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching,” Int. J. Fract., 26, 141–154 (1984).CrossRef K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching,” Int. J. Fract., 26, 141–154 (1984).CrossRef
14.
go back to reference H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).CrossRef H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).CrossRef
15.
go back to reference J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef
16.
go back to reference P. S. Theocaris and M. Sakellariou, “Crack propagation in brittle materials under compressive stresses studied by caustics,” J. Mater. Sci., 26, No. 6, 1640–1646 (1991).CrossRef P. S. Theocaris and M. Sakellariou, “Crack propagation in brittle materials under compressive stresses studied by caustics,” J. Mater. Sci., 26, No. 6, 1640–1646 (1991).CrossRef
17.
go back to reference R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef
18.
go back to reference Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef
19.
go back to reference C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2008). C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2008).
20.
go back to reference S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef
21.
go back to reference C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: a comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: a comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef
22.
go back to reference C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef
23.
go back to reference R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef
24.
go back to reference S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef
25.
go back to reference P. Cheng-zhi and C. Ping, “Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef P. Cheng-zhi and C. Ping, “Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef
26.
go back to reference K. Wallin, “A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests,” Eng. Fract. Mech., 99, 18–29 (2013).CrossRef K. Wallin, “A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests,” Eng. Fract. Mech., 99, 18–29 (2013).CrossRef
27.
go back to reference A. R. Ingraffea and F. E. Heuze, “Finite element models for rock fracture mechanics,” Int. J. Num. Anal. Meth. Geomech., 4, 25–43 (1980).CrossRef A. R. Ingraffea and F. E. Heuze, “Finite element models for rock fracture mechanics,” Int. J. Num. Anal. Meth. Geomech., 4, 25–43 (1980).CrossRef
28.
go back to reference M. Fatehi Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).CrossRef M. Fatehi Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).CrossRef
29.
go back to reference M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis,” JP J. Solids Struct., 1, 61–91 (2007). M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis,” JP J. Solids Struct., 1, 61–91 (2007).
30.
go back to reference C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).CrossRef C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).CrossRef
31.
go back to reference R. H. C. Wong, C. A Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002). R. H. C. Wong, C. A Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).
32.
go back to reference F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).CrossRef F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).CrossRef
33.
go back to reference M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28.
34.
go back to reference G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef
35.
go back to reference B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef
36.
go back to reference M. F. Marji, H. Hosseinin–Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, 1669– 1692 (2006). M. F. Marji, H. Hosseinin–Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, 1669– 1692 (2006).
37.
go back to reference M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365– 382 (2013).CrossRef M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365– 382 (2013).CrossRef
38.
go back to reference H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “A coupled numerical- experimental study of the breakage process of brittle substances,” Arabian J. Geosci., 8, No. 2, 809–825 (2013), doi: 10.1007/s12517-013-1165-1. H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “A coupled numerical- experimental study of the breakage process of brittle substances,” Arabian J. Geosci., 8, No. 2, 809–825 (2013), doi: 10.​1007/​s12517-013-1165-1.
39.
go back to reference H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).CrossRef
40.
go back to reference H. Haeri, M. F. Marji, K. Shahriar, and P. Moarefvand, “On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances,” Arabian J. Geosci., 8, No. 5, 2841–2852 (2015), doi: 10.1007/s12517-014-1290-5.CrossRef H. Haeri, M. F. Marji, K. Shahriar, and P. Moarefvand, “On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances,” Arabian J. Geosci., 8, No. 5, 2841–2852 (2015), doi: 10.​1007/​s12517-014-1290-5.CrossRef
41.
go back to reference H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).CrossRef
42.
go back to reference H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arabian J. Geosci., 8, No. 6, (2014), doi: 10.1007/s12517-014-1489-5. H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arabian J. Geosci., 8, No. 6, (2014), doi: 10.​1007/​s12517-014-1489-5.
43.
go back to reference J. T. Chen and H. K. Hong, “Review of dual boundary elements methods with emphasis on hypersingular integrals and divergent series,” Appl. Mech. Rev., 52, 17–33 (1999).CrossRef J. T. Chen and H. K. Hong, “Review of dual boundary elements methods with emphasis on hypersingular integrals and divergent series,” Appl. Mech. Rev., 52, 17–33 (1999).CrossRef
44.
go back to reference M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998). M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998).
45.
go back to reference Q. Rao, Z. Sun, O. Stephansson, et al., “Shear fracture (mode II) of brittle rock,” Int. J. Rock Mech. Min. Sci., 40, 355–375 (2003).CrossRef Q. Rao, Z. Sun, O. Stephansson, et al., “Shear fracture (mode II) of brittle rock,” Int. J. Rock Mech. Min. Sci., 40, 355–375 (2003).CrossRef
46.
go back to reference S. Kahraman and R. Altindag, “A brittleness index to estimate fracture toughness,” Int. J. Rock Mech. Min. Sci., 41, 343–348 (2004).CrossRef S. Kahraman and R. Altindag, “A brittleness index to estimate fracture toughness,” Int. J. Rock Mech. Min. Sci., 41, 343–348 (2004).CrossRef
47.
go back to reference K. J. Shou and S. L. Crouch, “A higher order displacement discontinuity method for analysis of crack problems,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 49–55 (1995).CrossRef K. J. Shou and S. L. Crouch, “A higher order displacement discontinuity method for analysis of crack problems,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 49–55 (1995).CrossRef
48.
go back to reference S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, University of Minnesota Geomechanics Report, Minneapolis, Minnesota (1967). S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, University of Minnesota Geomechanics Report, Minneapolis, Minnesota (1967).
49.
go back to reference H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef
50.
go back to reference C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef
51.
go back to reference M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).CrossRef M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).CrossRef
52.
go back to reference M. F. Marji, H. Hosseini-Nasab, and A. Hosseinmorsgedy, “Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters,” J. Mech. Mater. Struct., 2, 439–457 (2009). M. F. Marji, H. Hosseini-Nasab, and A. Hosseinmorsgedy, “Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters,” J. Mech. Mater. Struct., 2, 439–457 (2009).
53.
go back to reference G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957). G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).
Metadata
Title
Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions
Author
H. Haeri
Publication date
01-07-2015
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2015
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-015-9698-z

Other articles of this Issue 4/2015

Strength of Materials 4/2015 Go to the issue

Premium Partners