Skip to main content
Erschienen in: Strength of Materials 4/2015

01.07.2015

Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions

verfasst von: H. Haeri

Erschienen in: Strength of Materials | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanism of crack propagation in concrete specimens containing cracks under shear loading conditions is studied. The shear box test of pre-cracked (double edge cracks) concrete specimens is carried out under laboratory conditions. The higher order displacement discontinuity formulation and the special crack tip elements for the treatment of crack ends is used to numerically simulate the crack propagation mechanism of brittle solids under direct shear loading. A special modeling technique is also proposed to take into account the effect of crack overlapping on the fracturing process of the bridge area in between the two parallel cracks. In this study, the wing cracks are produced at the first stage of loading and continued their propagation paths toward the shear loading direction. The crack propagation path of the double edge cracked specimens in the bridge area is mostly affected by ligament angles and crack length whereas the shear strength is closely related to the failure pattern. The coalescence mechanism of cracks indicated that the pre-cracked concrete failure occurs in mixed mode in case of non-overlapping cracks configuration and in tensile mode for the overlapping cracks. Finally, comparing the numerical and experimental results validated the crack propagation modeling and verified the accuracy and efficiency of the proposed numerical method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).CrossRef H. H. Einstein, D. Veneziano, G. B. Baecher, and K. J. O’Reilly, “The effect of discontinuity persistence on rock slope stability,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, No. 5, 227–236 (1983).CrossRef
2.
Zurück zum Zitat N. R. Barton, “Review of a new shear strength criterion for rock joints,” Eng. Geol., 7, 287–332 (1973).CrossRef N. R. Barton, “Review of a new shear strength criterion for rock joints,” Eng. Geol., 7, 287–332 (1973).CrossRef
3.
Zurück zum Zitat B. Ladany and G. Archambault, “Simulation of shear behavior of a jointed rock mass,” in: Proc. of the 11th Symp. Rock Mechanics (ATME) (1970), pp. 105–125. B. Ladany and G. Archambault, “Simulation of shear behavior of a jointed rock mass,” in: Proc. of the 11th Symp. Rock Mechanics (ATME) (1970), pp. 105–125.
4.
Zurück zum Zitat Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Part II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, No. 4, 407–423 (1967). Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Part II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, No. 4, 407–423 (1967).
5.
Zurück zum Zitat A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).CrossRef A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998a).CrossRef
6.
Zurück zum Zitat A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998b).CrossRef A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998b).CrossRef
7.
Zurück zum Zitat T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300. T. Savilahti, E. Nordlund, and O. Stephansson, “Shear box testing and modeling of joint bridge,” in: N. Barton and O. Stephansson (Eds.), Rock Joints (Proc. of Int. Symp. on Rock Joints, June 4–6, 1990, Loen, Norway), Balkema, Rotterdam (1990), pp. 295–300.
8.
Zurück zum Zitat R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest, Swets & Zeitlinger Lisse, Leiden (2001), pp. 843–849. R. H. C. Wong, W. L. Leung, and S. W. Wang, “Shear strength study on rock-like models containing arrayed open joints,” in: D. Elsworth, J. P. Tinucci, and K. A. Heasley (Eds.), Rock Mechanics in the National Interest, Swets & Zeitlinger Lisse, Leiden (2001), pp. 843–849.
9.
Zurück zum Zitat C. Gehle and H. K. Kutter, “Breakage and shear behavior of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).CrossRef C. Gehle and H. K. Kutter, “Breakage and shear behavior of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).CrossRef
10.
Zurück zum Zitat A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Lisbon, Portugal (2007). A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the 11th ISRM Congress (July 9–13, 2007, Lisbon, Portugal), Lisbon, Portugal (2007).
11.
Zurück zum Zitat A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2011). A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2011).
12.
Zurück zum Zitat V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2013), doi: 10.1007/s00603-013-0450-3.CrossRef V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech. Rock Eng., 47, No. 4, 1355–1371 (2013), doi: 10.​1007/​s00603-013-0450-3.CrossRef
13.
Zurück zum Zitat K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching,” Int. J. Fract., 26, 141–154 (1984).CrossRef K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching,” Int. J. Fract., 26, 141–154 (1984).CrossRef
14.
Zurück zum Zitat H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).CrossRef H. Horii and S. Nemat-Nasser, “Compression-induced microcrack growth in brittle solids: axial splitting and shear failure,” J. Geophys. Res., 90, 3105–3125 (1985).CrossRef
15.
Zurück zum Zitat J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef
16.
Zurück zum Zitat P. S. Theocaris and M. Sakellariou, “Crack propagation in brittle materials under compressive stresses studied by caustics,” J. Mater. Sci., 26, No. 6, 1640–1646 (1991).CrossRef P. S. Theocaris and M. Sakellariou, “Crack propagation in brittle materials under compressive stresses studied by caustics,” J. Mater. Sci., 26, No. 6, 1640–1646 (1991).CrossRef
17.
Zurück zum Zitat R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef
18.
Zurück zum Zitat Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef
19.
Zurück zum Zitat C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2008). C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2008).
20.
Zurück zum Zitat S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef
21.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: a comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: a comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef
22.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef
23.
Zurück zum Zitat R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef
24.
Zurück zum Zitat S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef
25.
Zurück zum Zitat P. Cheng-zhi and C. Ping, “Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef P. Cheng-zhi and C. Ping, “Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef
26.
Zurück zum Zitat K. Wallin, “A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests,” Eng. Fract. Mech., 99, 18–29 (2013).CrossRef K. Wallin, “A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests,” Eng. Fract. Mech., 99, 18–29 (2013).CrossRef
27.
Zurück zum Zitat A. R. Ingraffea and F. E. Heuze, “Finite element models for rock fracture mechanics,” Int. J. Num. Anal. Meth. Geomech., 4, 25–43 (1980).CrossRef A. R. Ingraffea and F. E. Heuze, “Finite element models for rock fracture mechanics,” Int. J. Num. Anal. Meth. Geomech., 4, 25–43 (1980).CrossRef
28.
Zurück zum Zitat M. Fatehi Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).CrossRef M. Fatehi Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, 922–933 (2010).CrossRef
29.
Zurück zum Zitat M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis,” JP J. Solids Struct., 1, 61–91 (2007). M. Fatehi Marji, H. Hosseini-Nasab, and A. H. Kohsary, “A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis,” JP J. Solids Struct., 1, 61–91 (2007).
30.
Zurück zum Zitat C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).CrossRef C. A. Tang, P. Lin, R. H. C. Wong, and K. T. Chau, “Analysis of crack coalescence in rock-like materials containing three flaws – Part II: Numerical approach,” Int. J. Rock Mech. Min. Sci., 38, 925–939 (2001).CrossRef
31.
Zurück zum Zitat R. H. C. Wong, C. A Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002). R. H. C. Wong, C. A Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).
32.
Zurück zum Zitat F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).CrossRef F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” J. Basic Eng., 85, 519–527 (1963).CrossRef
33.
Zurück zum Zitat M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560 (1974), pp. 2–28.
34.
Zurück zum Zitat G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef
35.
Zurück zum Zitat B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef
36.
Zurück zum Zitat M. F. Marji, H. Hosseinin–Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, 1669– 1692 (2006). M. F. Marji, H. Hosseinin–Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, 1669– 1692 (2006).
37.
Zurück zum Zitat M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365– 382 (2013).CrossRef M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365– 382 (2013).CrossRef
38.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “A coupled numerical- experimental study of the breakage process of brittle substances,” Arabian J. Geosci., 8, No. 2, 809–825 (2013), doi: 10.1007/s12517-013-1165-1. H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “A coupled numerical- experimental study of the breakage process of brittle substances,” Arabian J. Geosci., 8, No. 2, 809–825 (2013), doi: 10.​1007/​s12517-013-1165-1.
39.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, and P. Moarefvand, “On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression,” Strength Mater., 46, No. 1, 140–152 (2014).CrossRef
40.
Zurück zum Zitat H. Haeri, M. F. Marji, K. Shahriar, and P. Moarefvand, “On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances,” Arabian J. Geosci., 8, No. 5, 2841–2852 (2015), doi: 10.1007/s12517-014-1290-5.CrossRef H. Haeri, M. F. Marji, K. Shahriar, and P. Moarefvand, “On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances,” Arabian J. Geosci., 8, No. 5, 2841–2852 (2015), doi: 10.​1007/​s12517-014-1290-5.CrossRef
41.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).CrossRef H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading,” Strength Mater., 46, No. 3, 404–416 (2014).CrossRef
42.
Zurück zum Zitat H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arabian J. Geosci., 8, No. 6, (2014), doi: 10.1007/s12517-014-1489-5. H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand, “Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM,” Arabian J. Geosci., 8, No. 6, (2014), doi: 10.​1007/​s12517-014-1489-5.
43.
Zurück zum Zitat J. T. Chen and H. K. Hong, “Review of dual boundary elements methods with emphasis on hypersingular integrals and divergent series,” Appl. Mech. Rev., 52, 17–33 (1999).CrossRef J. T. Chen and H. K. Hong, “Review of dual boundary elements methods with emphasis on hypersingular integrals and divergent series,” Appl. Mech. Rev., 52, 17–33 (1999).CrossRef
44.
Zurück zum Zitat M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998). M. H. Aliabadi, Fracture of Rocks, Computational Mechanics Publications, Southampton, UK (1998).
45.
Zurück zum Zitat Q. Rao, Z. Sun, O. Stephansson, et al., “Shear fracture (mode II) of brittle rock,” Int. J. Rock Mech. Min. Sci., 40, 355–375 (2003).CrossRef Q. Rao, Z. Sun, O. Stephansson, et al., “Shear fracture (mode II) of brittle rock,” Int. J. Rock Mech. Min. Sci., 40, 355–375 (2003).CrossRef
46.
Zurück zum Zitat S. Kahraman and R. Altindag, “A brittleness index to estimate fracture toughness,” Int. J. Rock Mech. Min. Sci., 41, 343–348 (2004).CrossRef S. Kahraman and R. Altindag, “A brittleness index to estimate fracture toughness,” Int. J. Rock Mech. Min. Sci., 41, 343–348 (2004).CrossRef
47.
Zurück zum Zitat K. J. Shou and S. L. Crouch, “A higher order displacement discontinuity method for analysis of crack problems,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 49–55 (1995).CrossRef K. J. Shou and S. L. Crouch, “A higher order displacement discontinuity method for analysis of crack problems,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 49–55 (1995).CrossRef
48.
Zurück zum Zitat S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, University of Minnesota Geomechanics Report, Minneapolis, Minnesota (1967). S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, University of Minnesota Geomechanics Report, Minneapolis, Minnesota (1967).
49.
Zurück zum Zitat H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef
50.
Zurück zum Zitat C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef
51.
Zurück zum Zitat M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).CrossRef M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).CrossRef
52.
Zurück zum Zitat M. F. Marji, H. Hosseini-Nasab, and A. Hosseinmorsgedy, “Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters,” J. Mech. Mater. Struct., 2, 439–457 (2009). M. F. Marji, H. Hosseini-Nasab, and A. Hosseinmorsgedy, “Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters,” J. Mech. Mater. Struct., 2, 439–457 (2009).
53.
Zurück zum Zitat G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957). G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).
Metadaten
Titel
Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions
verfasst von
H. Haeri
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2015
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-015-9698-z

Weitere Artikel der Ausgabe 4/2015

Strength of Materials 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.