Skip to main content
Top
Published in: Meccanica 4-5/2018

31-10-2017

Simulation of liquid reaction and droplet formation on a moving micro-object by lattice Boltzmann method

Authors: A. Asadollahi, S. Rashidi, J. A. Esfahani

Published in: Meccanica | Issue 4-5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates condensation process and liquid reaction on a moving square shape micro-object by lattice Boltzmann method. Micro-object with a horizontal velocity toward the left side of the domain is considered. Both condensation and evaporation processes are included in the simulations for three cases. For first case, it is assumed that there is no liquid on micro-object walls at initial time and appearance of liquid is only due to the condensation. For second, and third cases, a drop is considered initially on upper, and back walls of the micro-object, respectively. The effects of initial position of drop and velocity of micro-object on liquid reaction and condensation process are investigated. It is found that for all values of micro-object velocity, the difference between three cases for liquid reaction parameter will be negligible over time. Moreover, the liquid reaction grows faster for high values of micro-object velocity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sanjay S, Dou M, Fu G, Xu F, Li H (2016) Controlled drug delivery using microdevices. J Curr Pharmaceut Biotechnol 17:772–787CrossRef Sanjay S, Dou M, Fu G, Xu F, Li H (2016) Controlled drug delivery using microdevices. J Curr Pharmaceut Biotechnol 17:772–787CrossRef
2.
go back to reference Tao SL, Desai TA (2006) Microdevices for oral drug delivery. In: Ferrari M, Desai T, Bhatia S (eds) BioMEMS and biomedical nanotechnology. Springer, Boston, MA Tao SL, Desai TA (2006) Microdevices for oral drug delivery. In: Ferrari M, Desai T, Bhatia S (eds) BioMEMS and biomedical nanotechnology. Springer, Boston, MA
3.
go back to reference Yin KM, Hsuen HK, Kung YA (2014) A comparison of numerical methods on the two-phase flow in PEMFCs. J Taiwan Inst Chem Eng 45:2358–2369CrossRef Yin KM, Hsuen HK, Kung YA (2014) A comparison of numerical methods on the two-phase flow in PEMFCs. J Taiwan Inst Chem Eng 45:2358–2369CrossRef
4.
go back to reference Yin KM, Hsuen HK, Kung YA, Cheng BS (2016) One-dimensional comparison of numerical approaches on two-phase flow in the membrane electrode assembly of PEMFC. J Taiwan Inst Chem Eng 63:133–142CrossRef Yin KM, Hsuen HK, Kung YA, Cheng BS (2016) One-dimensional comparison of numerical approaches on two-phase flow in the membrane electrode assembly of PEMFC. J Taiwan Inst Chem Eng 63:133–142CrossRef
5.
6.
go back to reference Fang C, David M, Wang F, Goodson KE (2010) Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation. Int J Multiph Flow 36:608–619CrossRef Fang C, David M, Wang F, Goodson KE (2010) Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation. Int J Multiph Flow 36:608–619CrossRef
7.
go back to reference Carton JG, Lawlor V, Olabi AG, Hochenauer C, Zauner G (2012) Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels. Energy 39:63–73CrossRef Carton JG, Lawlor V, Olabi AG, Hochenauer C, Zauner G (2012) Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels. Energy 39:63–73CrossRef
8.
go back to reference Jiang R, Ma XH, Lan Z, Bai YX, Bai T (2015) Visualization study of condensation of ethanol–water mixtures in trapezoidal microchannels. Int J Heat Mass Transf 90:339–349CrossRef Jiang R, Ma XH, Lan Z, Bai YX, Bai T (2015) Visualization study of condensation of ethanol–water mixtures in trapezoidal microchannels. Int J Heat Mass Transf 90:339–349CrossRef
9.
go back to reference Goss G Jr, Oliveira JLG, Passos JC (2015) Pressure drop during condensation of R-134a inside parallel microchannels. Int J Refrig 56:114–125CrossRef Goss G Jr, Oliveira JLG, Passos JC (2015) Pressure drop during condensation of R-134a inside parallel microchannels. Int J Refrig 56:114–125CrossRef
10.
go back to reference Fan X, Ma X, Yang L, Lan Z, Hao T, Jiang R, Bai T (2016) Experimental study on two-phase flow pressure drop during steam condensation in trapezoidal microchannels. Exp Thermal Fluid Sci 76:45–56CrossRef Fan X, Ma X, Yang L, Lan Z, Hao T, Jiang R, Bai T (2016) Experimental study on two-phase flow pressure drop during steam condensation in trapezoidal microchannels. Exp Thermal Fluid Sci 76:45–56CrossRef
11.
go back to reference Fallah Kharmiani S, Passandideh-Fard M, Niazmand H (2016) Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method. J Mol Liq 222:1172–1182CrossRef Fallah Kharmiani S, Passandideh-Fard M, Niazmand H (2016) Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method. J Mol Liq 222:1172–1182CrossRef
12.
go back to reference Amiri Rad E (2014) Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann. Meccanica 49:1457–1467MathSciNetCrossRefMATH Amiri Rad E (2014) Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann. Meccanica 49:1457–1467MathSciNetCrossRefMATH
13.
go back to reference Amiri Rad E (2015) Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation. Meccanica 50:995–1001MathSciNetCrossRef Amiri Rad E (2015) Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation. Meccanica 50:995–1001MathSciNetCrossRef
14.
go back to reference Alapati S, Kang S, Suh YK (2008) 3D Lattice Boltzmann simulation of droplet formation in a cross-junction microchannel. In: 3rd IASME/WSEAS international conference on continuum mechanics (CM’08), Cambridge, UK. pp 150–156 Alapati S, Kang S, Suh YK (2008) 3D Lattice Boltzmann simulation of droplet formation in a cross-junction microchannel. In: 3rd IASME/WSEAS international conference on continuum mechanics (CM’08), Cambridge, UK. pp 150–156
15.
go back to reference Huang JJ, Shu C, Chew YT (2009) Lattice Boltzmann study of droplet motion inside a grooved channel. Phys Fluids 21:0221031–02210311MATH Huang JJ, Shu C, Chew YT (2009) Lattice Boltzmann study of droplet motion inside a grooved channel. Phys Fluids 21:0221031–02210311MATH
16.
go back to reference Wang W, Liu Z, Jin Y, Cheng Y (2011) LBM simulation of droplet formation in micro-channels. Chem Eng J 173:828–836CrossRef Wang W, Liu Z, Jin Y, Cheng Y (2011) LBM simulation of droplet formation in micro-channels. Chem Eng J 173:828–836CrossRef
17.
go back to reference Fu X, Yao Z, Hao P (2014) Numerical simulation of condensation on structured surfaces. Langmuir 30:14048–14055CrossRef Fu X, Yao Z, Hao P (2014) Numerical simulation of condensation on structured surfaces. Langmuir 30:14048–14055CrossRef
18.
go back to reference Valipour MS, Rashidi S, Masoodi R (2014) Magnetohydrodynamics flow and heat transfer around a solid cylinder wrapped with a porous ring. ASME J Heat Transf 136(6):062601CrossRef Valipour MS, Rashidi S, Masoodi R (2014) Magnetohydrodynamics flow and heat transfer around a solid cylinder wrapped with a porous ring. ASME J Heat Transf 136(6):062601CrossRef
19.
go back to reference Rashidi A, Jazebi F, Brilakis I (2011) Neuro-fuzzy genetic system for selection of construction project managers. ASCE J Constr Eng Manag 137(1):17–29CrossRef Rashidi A, Jazebi F, Brilakis I (2011) Neuro-fuzzy genetic system for selection of construction project managers. ASCE J Constr Eng Manag 137(1):17–29CrossRef
20.
go back to reference Rashidi A, Sigari MH, Maghiar M, Citrin D (2016) An analogy between various machine-learning techniques for detecting construction materials in digital images. KSCE J Civ Eng 20(4):1178–1188CrossRef Rashidi A, Sigari MH, Maghiar M, Citrin D (2016) An analogy between various machine-learning techniques for detecting construction materials in digital images. KSCE J Civ Eng 20(4):1178–1188CrossRef
21.
go back to reference Rashidi A, Brilakis I, Vela P (2015) Generating absolute-scale point cloud data of built infrastructure scenes using a monocular camera setting. ASCE J Comput Civ Eng 29(6):04014089CrossRef Rashidi A, Brilakis I, Vela P (2015) Generating absolute-scale point cloud data of built infrastructure scenes using a monocular camera setting. ASCE J Comput Civ Eng 29(6):04014089CrossRef
22.
go back to reference Rashidi A, Dai F, Brilakis I, Vela P (2013) Optimized selection of key frames for monocular videogrammetric surveying of civil infrastructure. J Adv Eng Inform 27(2):270–282CrossRef Rashidi A, Dai F, Brilakis I, Vela P (2013) Optimized selection of key frames for monocular videogrammetric surveying of civil infrastructure. J Adv Eng Inform 27(2):270–282CrossRef
23.
go back to reference Dai F, Rashidi A, Brilakis I, Vela P (2013) Comparison of image- and time-of-flight-based technologies for three-dimensional reconstruction of infrastructure. ASCE J Comput Civ Eng Manag 139(1):929–939 Dai F, Rashidi A, Brilakis I, Vela P (2013) Comparison of image- and time-of-flight-based technologies for three-dimensional reconstruction of infrastructure. ASCE J Comput Civ Eng Manag 139(1):929–939
24.
go back to reference Jazebi F, Rashidi A (2013) An automated procedure for selecting project managers in construction firms. J Civ Eng Manag 19(1):97–106CrossRef Jazebi F, Rashidi A (2013) An automated procedure for selecting project managers in construction firms. J Civ Eng Manag 19(1):97–106CrossRef
25.
go back to reference Shan X, Chen H (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49(4):2941ADSMathSciNetCrossRef Shan X, Chen H (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49(4):2941ADSMathSciNetCrossRef
26.
go back to reference Shan X (2006) Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys Rev E 73(4):1–4MathSciNetCrossRef Shan X (2006) Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys Rev E 73(4):1–4MathSciNetCrossRef
27.
go back to reference Qian Y, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. EPL (Europhysics Letters). p 17 Qian Y, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. EPL (Europhysics Letters). p 17
28.
go back to reference Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, BerlinCrossRefMATH Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, BerlinCrossRefMATH
29.
go back to reference Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATH Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATH
30.
go back to reference Sukop MC, Thorne DT Jr (2006) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, Berlin Sukop MC, Thorne DT Jr (2006) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, Berlin
31.
go back to reference He X, Doolen GD (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATH He X, Doolen GD (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATH
32.
go back to reference Amara MEAB, Nasrallah SB (2015) Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel. Int J Hydrog Energy 40:1333–1342CrossRef Amara MEAB, Nasrallah SB (2015) Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel. Int J Hydrog Energy 40:1333–1342CrossRef
33.
go back to reference Martys N, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzamnn model. Phys Rev E 53:743ADSCrossRef Martys N, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzamnn model. Phys Rev E 53:743ADSCrossRef
34.
go back to reference Lin CX, Wang D, Bao A (2011) Numerical modeling and simulation of condensation heat transfer in a bundle of transport membrane tubes for waste heat and water recovery. In: ASME International Mechanical Engineering Congress, Denver, Colorado, USA Lin CX, Wang D, Bao A (2011) Numerical modeling and simulation of condensation heat transfer in a bundle of transport membrane tubes for waste heat and water recovery. In: ASME International Mechanical Engineering Congress, Denver, Colorado, USA
Metadata
Title
Simulation of liquid reaction and droplet formation on a moving micro-object by lattice Boltzmann method
Authors
A. Asadollahi
S. Rashidi
J. A. Esfahani
Publication date
31-10-2017
Publisher
Springer Netherlands
Published in
Meccanica / Issue 4-5/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0780-4

Other articles of this Issue 4-5/2018

Meccanica 4-5/2018 Go to the issue

Premium Partners