Skip to main content
Erschienen in: Meccanica 6/2014

01.06.2014

Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann

verfasst von: Ehsan Amiri Rad

Erschienen in: Meccanica | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coalescence is the process by which two or more droplets merge to form a single droplet. It can take place in many processes, ranging from meteorology to astrophysics. When two stationary droplets are suspended in a bulk vapor, if the gap between the droplets has been smaller than a critical value, the two droplets will coalesce. In this paper, single component, two phase flow is modeled under shear flow using a free energy lattice Boltzmann approach and the coalescence of stationary droplets are investigated for different cases of radius and shear rate. The results show that there is a critical gap between droplets and for the values larger than that they will not coalesce. Also in the case of constant thermophysical properties, this critical gap is a function of droplet radius and shear rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Jasnow D, Vinals J (1996) Coarse-grained description of thermo- capillary flow. Phys Fluids 8:660–669ADSCrossRefMATH Jasnow D, Vinals J (1996) Coarse-grained description of thermo- capillary flow. Phys Fluids 8:660–669ADSCrossRefMATH
3.
Zurück zum Zitat Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech 30:139–165ADSCrossRefMathSciNet Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech 30:139–165ADSCrossRefMathSciNet
6.
Zurück zum Zitat Jamet D, Lebaigue O, Coutris N, Delhaye JM (2001) The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. J Comput Phys 169:624–651ADSCrossRefMATHMathSciNet Jamet D, Lebaigue O, Coutris N, Delhaye JM (2001) The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. J Comput Phys 169:624–651ADSCrossRefMATHMathSciNet
7.
Zurück zum Zitat Kim J (2005) A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl Math Compt 160:589–606CrossRefMATH Kim J (2005) A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl Math Compt 160:589–606CrossRefMATH
8.
Zurück zum Zitat Keestra BJ, Van Puyvelde PCJ, Anderson PD, Meijer HEH (2003) Diffuse-interface modelling of the morphology and rheology of immiscible polymer blends. Phys Fluids 15(9):2567–2575ADSCrossRef Keestra BJ, Van Puyvelde PCJ, Anderson PD, Meijer HEH (2003) Diffuse-interface modelling of the morphology and rheology of immiscible polymer blends. Phys Fluids 15(9):2567–2575ADSCrossRef
9.
Zurück zum Zitat Teigen KE, Song P, Lowengrub J, Voigt A (2011) A diffuse-interface method for two-phase flows with soluble surfactants. J Compt Phys 230(2):375–393ADSCrossRefMATHMathSciNet Teigen KE, Song P, Lowengrub J, Voigt A (2011) A diffuse-interface method for two-phase flows with soluble surfactants. J Compt Phys 230(2):375–393ADSCrossRefMATHMathSciNet
10.
Zurück zum Zitat Yue P, Feng JJ, Liu C, Shen J (2005) Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J Non-Newtonian Fluid Mech 129:163–176CrossRefMATH Yue P, Feng JJ, Liu C, Shen J (2005) Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J Non-Newtonian Fluid Mech 129:163–176CrossRefMATH
11.
Zurück zum Zitat Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327ADSCrossRef Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327ADSCrossRef
12.
Zurück zum Zitat Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819ADSCrossRef Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819ADSCrossRef
13.
Zurück zum Zitat Shan X, Chen H (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948ADSCrossRef Shan X, Chen H (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948ADSCrossRef
14.
Zurück zum Zitat Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833ADSCrossRef Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833ADSCrossRef
15.
Zurück zum Zitat Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54:5041–5052ADSCrossRef Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54:5041–5052ADSCrossRef
16.
Zurück zum Zitat He X, Shan X, Doolen GD (1998) Discrete Boltzmann equation model for nonideal gases. Phys Rev E 57:R13–R16ADSCrossRef He X, Shan X, Doolen GD (1998) Discrete Boltzmann equation model for nonideal gases. Phys Rev E 57:R13–R16ADSCrossRef
17.
Zurück zum Zitat He X, Doolen GD (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATH He X, Doolen GD (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATH
18.
Zurück zum Zitat Luo L (1998) Unified theory of lattice Boltzmann models for nonideal gases. Phys Rev Lett 81:1618–1621ADSCrossRef Luo L (1998) Unified theory of lattice Boltzmann models for nonideal gases. Phys Rev Lett 81:1618–1621ADSCrossRef
19.
Zurück zum Zitat Zhang L, Goodson KE, Kenny TW (2004) Silicon microchannel heat sinks theories and phenomena. Springer, BerlinCrossRef Zhang L, Goodson KE, Kenny TW (2004) Silicon microchannel heat sinks theories and phenomena. Springer, BerlinCrossRef
20.
Zurück zum Zitat Zhang J, Li B, Kwok DY (2004) Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces. Phys Rev E 69(032602):1–4 Zhang J, Li B, Kwok DY (2004) Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces. Phys Rev E 69(032602):1–4
21.
Zurück zum Zitat Lee T, Fischer PF (2006) Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys Rev E 74(046709):1–7MATH Lee T, Fischer PF (2006) Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys Rev E 74(046709):1–7MATH
22.
Zurück zum Zitat Lee T, Lin CL (2003) Pressure evolution lattice-Boltzmann-equation method for twophase flow with phase change. Phys Rev E 67(056703):1–10 Lee T, Lin CL (2003) Pressure evolution lattice-Boltzmann-equation method for twophase flow with phase change. Phys Rev E 67(056703):1–10
23.
Zurück zum Zitat Succi S, Foti E, Gramignani M (1990) Flow through geometrically irregular media with lattice gas automata. Meccanica 25(4):253–257CrossRef Succi S, Foti E, Gramignani M (1990) Flow through geometrically irregular media with lattice gas automata. Meccanica 25(4):253–257CrossRef
24.
Zurück zum Zitat [24] Nazari M, Ramzani S (2013) Cooling of an electronic board situated in various configurations inside an enclosure: lattice Boltzmann method. Meccanica doi:10.1007/s11012-013-9817-5 [24] Nazari M, Ramzani S (2013) Cooling of an electronic board situated in various configurations inside an enclosure: lattice Boltzmann method. Meccanica doi:10.​1007/​s11012-013-9817-5
25.
Zurück zum Zitat Landau L, Lifshitz E (1987) Fluid mechanics. Pergamon, OxfordMATH Landau L, Lifshitz E (1987) Fluid mechanics. Pergamon, OxfordMATH
26.
Zurück zum Zitat Inamuro T, Konishi N, Ogino F (2000) A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free energy approach. Compt Phys Commun 129:32–45ADSCrossRefMATHMathSciNet Inamuro T, Konishi N, Ogino F (2000) A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free energy approach. Compt Phys Commun 129:32–45ADSCrossRefMATHMathSciNet
27.
Zurück zum Zitat Briant AJ, Papatzacos P, Yeomans JM (2002) Lattice Boltzmann simulations of contact line motion in a liquid–gas system. Phil Trans R Soc Lond A 360:485–495ADSCrossRefMATH Briant AJ, Papatzacos P, Yeomans JM (2002) Lattice Boltzmann simulations of contact line motion in a liquid–gas system. Phil Trans R Soc Lond A 360:485–495ADSCrossRefMATH
28.
Zurück zum Zitat Briant AJ, Wagner AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. I. Liquid–gas systems. Phys Rev E 69(031602):1–14 Briant AJ, Wagner AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. I. Liquid–gas systems. Phys Rev E 69(031602):1–14
29.
Zurück zum Zitat Xu A, Gonnella G, Lamura A (2004) Phase separation of incompressible binary fluids with lattice Boltzmann methods. Phys A 331:10–22CrossRef Xu A, Gonnella G, Lamura A (2004) Phase separation of incompressible binary fluids with lattice Boltzmann methods. Phys A 331:10–22CrossRef
30.
Zurück zum Zitat Dupuis A, Yeomans JM (2005) Modelling droplets on super hydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629CrossRef Dupuis A, Yeomans JM (2005) Modelling droplets on super hydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629CrossRef
31.
Zurück zum Zitat Pooley CM, Furtado K (2008) Eliminating spurious velocities in the free-energy lattice Boltzmann method. Phys Rev E 77(046702):1–9 Pooley CM, Furtado K (2008) Eliminating spurious velocities in the free-energy lattice Boltzmann method. Phys Rev E 77(046702):1–9
32.
Zurück zum Zitat Ledesma-Aguilar R, Hern`andez-Machado A, Pagonabarraga I (2007) Three-dimensional aspects of fluid flows in channels. II. Effects of meniscus and thin film regimes on viscous fingers. Phys Fluids 19(102112):1–10 Ledesma-Aguilar R, Hern`andez-Machado A, Pagonabarraga I (2007) Three-dimensional aspects of fluid flows in channels. II. Effects of meniscus and thin film regimes on viscous fingers. Phys Fluids 19(102112):1–10
33.
34.
Zurück zum Zitat Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, BerlinCrossRefMATH Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, BerlinCrossRefMATH
35.
36.
Zurück zum Zitat Evans R (1979) The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28:143–200ADSCrossRef Evans R (1979) The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28:143–200ADSCrossRef
38.
Zurück zum Zitat Khatavkar VV, Anderson PD, Meijer HEH (2006) On scaling of diffuse–interface models. Chem Eng Sci 61:2364–2378CrossRef Khatavkar VV, Anderson PD, Meijer HEH (2006) On scaling of diffuse–interface models. Chem Eng Sci 61:2364–2378CrossRef
39.
Zurück zum Zitat McGaughey AJH, Ward CA (2003) Droplet stability in a finite system: consideration of the solid–vapor interface. J Appl Phys 93(6):3619–3626ADSCrossRef McGaughey AJH, Ward CA (2003) Droplet stability in a finite system: consideration of the solid–vapor interface. J Appl Phys 93(6):3619–3626ADSCrossRef
Metadaten
Titel
Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann
verfasst von
Ehsan Amiri Rad
Publikationsdatum
01.06.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 6/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-9918-9

Weitere Artikel der Ausgabe 6/2014

Meccanica 6/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.