Skip to main content
Top
Published in: Chemistry and Technology of Fuels and Oils 6/2020

19-03-2020

Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs

Authors: Haiyang Zhao, Yaozeng Xie, Liqiang Zhao, Zhiyuan Liu, Yongshou Li, Nan Li

Published in: Chemistry and Technology of Fuels and Oils | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Gischler, R. Heindel, D. Birgel D, et aL, “Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstractions cemented by microbial micrite,” Palaeogeog.. Palaeoclimatol., Palaeoecol., 468, 34-51(2017). E. Gischler, R. Heindel, D. Birgel D, et aL, “Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstractions cemented by microbial micrite,” Palaeogeog.. Palaeoclimatol., Palaeoecol., 468, 34-51(2017).
2.
go back to reference Zhifeng Luo, Nanlin Zhang, Liqiang Zhao, Li Ran, and Yang Zhang, “Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs,” Environ. Earth Sci., 78(175), 1-15 (2019). Zhifeng Luo, Nanlin Zhang, Liqiang Zhao, Li Ran, and Yang Zhang, “Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs,” Environ. Earth Sci., 78(175), 1-15 (2019).
3.
go back to reference C. Li, X. Zhou, S. You, et al., “Analysis of two-phase gas-water flow in carbonate reservoirs,” J. Mini. Sci., 53(4), 643-654 (2018).CrossRef C. Li, X. Zhou, S. You, et al., “Analysis of two-phase gas-water flow in carbonate reservoirs,” J. Mini. Sci., 53(4), 643-654 (2018).CrossRef
4.
go back to reference N. Lamont and F.W. Jessen, “The effects of existing fractures in rocks on the extension of hydraulic fractures,” J. Pet. Technol., 15(02), 203-209 (1963).CrossRef N. Lamont and F.W. Jessen, “The effects of existing fractures in rocks on the extension of hydraulic fractures,” J. Pet. Technol., 15(02), 203-209 (1963).CrossRef
5.
go back to reference J. Zhou, M. Chen, Y. Jin, et. al., “Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir,” Acta Petrol. Sin., 28(5), 109-112 (2007). J. Zhou, M. Chen, Y. Jin, et. al., “Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir,” Acta Petrol. Sin., 28(5), 109-112 (2007).
6.
go back to reference T.R. Guo, S.C. Zhang, Z.Q. Qu, et al., “Experimental study of hydraulic fracturing for shale by stimulated reservoir volume,” Fuel, 128, 373-380 (2014).CrossRef T.R. Guo, S.C. Zhang, Z.Q. Qu, et al., “Experimental study of hydraulic fracturing for shale by stimulated reservoir volume,” Fuel, 128, 373-380 (2014).CrossRef
7.
go back to reference Y. Chitrala, C. Moreno, C. Sondergeld, et. al., “An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions,” J. Pet. Sci. Eng., 108, 151-161(2013). Y. Chitrala, C. Moreno, C. Sondergeld, et. al., “An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions,” J. Pet. Sci. Eng., 108, 151-161(2013).
8.
go back to reference V.V. Zubkov, V.F. Roshelev, and A.M. Linkov, “Numerical modeling of hydraulic fracture initiation and development,” J. Mini .Sci., 43(1), 40-56 (2007).CrossRef V.V. Zubkov, V.F. Roshelev, and A.M. Linkov, “Numerical modeling of hydraulic fracture initiation and development,” J. Mini .Sci., 43(1), 40-56 (2007).CrossRef
9.
go back to reference N. Zangeneh, E. Eberhardt, and R.M. Bustin, “Application of the distinct-element method to investigate the influence of natural fractures and in situ stresses on hydro-fracture propagation,” 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 1-8 (2012). N. Zangeneh, E. Eberhardt, and R.M. Bustin, “Application of the distinct-element method to investigate the influence of natural fractures and in situ stresses on hydro-fracture propagation,” 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 1-8 (2012).
10.
go back to reference Y. E. Aimene and J.A. Nairn, “Modeling multiple hydraulic fractures interacting with natural fractures using the material point method,” Society of Petroleum Engineers, 2014. Y. E. Aimene and J.A. Nairn, “Modeling multiple hydraulic fractures interacting with natural fractures using the material point method,” Society of Petroleum Engineers, 2014.
11.
go back to reference S.H. Advani, T.S. Lee, and J.K. Lee, “Three-dimensional modeling of hydraulic fractures in layered media: Part I - Finite Element Formulations,” J. Energy Res. Technol., 112(1), 1-9 (1990).CrossRef S.H. Advani, T.S. Lee, and J.K. Lee, “Three-dimensional modeling of hydraulic fractures in layered media: Part I - Finite Element Formulations,” J. Energy Res. Technol., 112(1), 1-9 (1990).CrossRef
12.
go back to reference A.D. Taleghani and J.E. Olson, “How natural fractures could affect hydraulic-fracture geometry,” SPE J., 19 (1), 161-171 (2014).CrossRef A.D. Taleghani and J.E. Olson, “How natural fractures could affect hydraulic-fracture geometry,” SPE J., 19 (1), 161-171 (2014).CrossRef
13.
go back to reference L. Fei, L. Zhifeng, S. Yu, et al., “Deformation behavior between hydraulic and natural fractures using fully coupled hydromechanical model with XFEM,” Math. Probl. Eng., 2017, 1-12 (2017).CrossRef L. Fei, L. Zhifeng, S. Yu, et al., “Deformation behavior between hydraulic and natural fractures using fully coupled hydromechanical model with XFEM,” Math. Probl. Eng., 2017, 1-12 (2017).CrossRef
14.
go back to reference S. Salimzadeh, A. Paluszny, H.M. Nick, et al., “A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems,” Geothermics, 71, 212-224 (2018).CrossRef S. Salimzadeh, A. Paluszny, H.M. Nick, et al., “A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems,” Geothermics, 71, 212-224 (2018).CrossRef
15.
go back to reference B. Fan, J. Deng, H. Lin, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(1), 1-10 (2018). B. Fan, J. Deng, H. Lin, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(1), 1-10 (2018).
16.
go back to reference B. Fan, J. Deng, L. Hai, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(6), 943-954 (2018).CrossRef B. Fan, J. Deng, L. Hai, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(6), 943-954 (2018).CrossRef
17.
go back to reference Y. Fan, Y. Zhao, Z. Zhu, et al., “Stress intensity factors for a tunnel containing a radial crack under compression,” Adv. Mech. Eng., 9(12), 1-10 (2017).CrossRef Y. Fan, Y. Zhao, Z. Zhu, et al., “Stress intensity factors for a tunnel containing a radial crack under compression,” Adv. Mech. Eng., 9(12), 1-10 (2017).CrossRef
18.
go back to reference Z. Luo, N. Zhang, L. Zhao, L. Yao and F. Liu, “Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures,” J. Pet. Sci. Eng., 171, 37-46 (2018).CrossRef Z. Luo, N. Zhang, L. Zhao, L. Yao and F. Liu, “Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures,” J. Pet. Sci. Eng., 171, 37-46 (2018).CrossRef
19.
go back to reference E. Budyn, G Zi, S.N. Mo, et al., “A method for multiple crack growth in brittle materials without remeshing,” Int. J. Numer. Methods Eng., 61(10), 1741-1770 (2004).CrossRef E. Budyn, G Zi, S.N. Mo, et al., “A method for multiple crack growth in brittle materials without remeshing,Int. J. Numer. Methods Eng., 61(10), 1741-1770 (2004).CrossRef
20.
go back to reference T.P. Fries. “A corrected XFEM approximation without problems in blending elements,” Int. J. Numer. Methods Eng., 75(5), 503-532 (2008).CrossRef T.P. Fries. “A corrected XFEM approximation without problems in blending elements,” Int. J. Numer. Methods Eng., 75(5), 503-532 (2008).CrossRef
21.
go back to reference Y. Doug and Q. Ren, “ An extended finite element method for modeling hydraulic fracturing in gravity dam, J. Hydraul. Eng., 42(11), 1361-1367 (2011). Y. Doug and Q. Ren, “ An extended finite element method for modeling hydraulic fracturing in gravity dam, J. Hydraul. Eng., 42(11), 1361-1367 (2011).
22.
go back to reference M. Sheng and G. Li, “Extended finite element modeling of hydraulic fracture propagation,” Eng. Mech., 31(10), 123-128 (2014). M. Sheng and G. Li, “Extended finite element modeling of hydraulic fracture propagation,” Eng. Mech., 31(10), 123-128 (2014).
23.
go back to reference A.D. Taleghani and J.E. Olson, “Analysis of multistranded hydraulic fracture propagation: an improved model for the interaction between induced and natural fractures,” SPE Technical Conference & Exhibition. Society of Petroleum Engineers, 2009. A.D. Taleghani and J.E. Olson, “Analysis of multistranded hydraulic fracture propagation: an improved model for the interaction between induced and natural fractures,” SPE Technical Conference & Exhibition. Society of Petroleum Engineers, 2009.
Metadata
Title
Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs
Authors
Haiyang Zhao
Yaozeng Xie
Liqiang Zhao
Zhiyuan Liu
Yongshou Li
Nan Li
Publication date
19-03-2020
Publisher
Springer US
Published in
Chemistry and Technology of Fuels and Oils / Issue 6/2020
Print ISSN: 0009-3092
Electronic ISSN: 1573-8310
DOI
https://doi.org/10.1007/s10553-020-01096-9

Other articles of this Issue 6/2020

Chemistry and Technology of Fuels and Oils 6/2020 Go to the issue