Skip to main content
Erschienen in: Chemistry and Technology of Fuels and Oils 6/2020

19.03.2020

Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs

verfasst von: Haiyang Zhao, Yaozeng Xie, Liqiang Zhao, Zhiyuan Liu, Yongshou Li, Nan Li

Erschienen in: Chemistry and Technology of Fuels and Oils | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Gischler, R. Heindel, D. Birgel D, et aL, “Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstractions cemented by microbial micrite,” Palaeogeog.. Palaeoclimatol., Palaeoecol., 468, 34-51(2017). E. Gischler, R. Heindel, D. Birgel D, et aL, “Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstractions cemented by microbial micrite,” Palaeogeog.. Palaeoclimatol., Palaeoecol., 468, 34-51(2017).
2.
Zurück zum Zitat Zhifeng Luo, Nanlin Zhang, Liqiang Zhao, Li Ran, and Yang Zhang, “Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs,” Environ. Earth Sci., 78(175), 1-15 (2019). Zhifeng Luo, Nanlin Zhang, Liqiang Zhao, Li Ran, and Yang Zhang, “Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs,” Environ. Earth Sci., 78(175), 1-15 (2019).
3.
Zurück zum Zitat C. Li, X. Zhou, S. You, et al., “Analysis of two-phase gas-water flow in carbonate reservoirs,” J. Mini. Sci., 53(4), 643-654 (2018).CrossRef C. Li, X. Zhou, S. You, et al., “Analysis of two-phase gas-water flow in carbonate reservoirs,” J. Mini. Sci., 53(4), 643-654 (2018).CrossRef
4.
Zurück zum Zitat N. Lamont and F.W. Jessen, “The effects of existing fractures in rocks on the extension of hydraulic fractures,” J. Pet. Technol., 15(02), 203-209 (1963).CrossRef N. Lamont and F.W. Jessen, “The effects of existing fractures in rocks on the extension of hydraulic fractures,” J. Pet. Technol., 15(02), 203-209 (1963).CrossRef
5.
Zurück zum Zitat J. Zhou, M. Chen, Y. Jin, et. al., “Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir,” Acta Petrol. Sin., 28(5), 109-112 (2007). J. Zhou, M. Chen, Y. Jin, et. al., “Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir,” Acta Petrol. Sin., 28(5), 109-112 (2007).
6.
Zurück zum Zitat T.R. Guo, S.C. Zhang, Z.Q. Qu, et al., “Experimental study of hydraulic fracturing for shale by stimulated reservoir volume,” Fuel, 128, 373-380 (2014).CrossRef T.R. Guo, S.C. Zhang, Z.Q. Qu, et al., “Experimental study of hydraulic fracturing for shale by stimulated reservoir volume,” Fuel, 128, 373-380 (2014).CrossRef
7.
Zurück zum Zitat Y. Chitrala, C. Moreno, C. Sondergeld, et. al., “An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions,” J. Pet. Sci. Eng., 108, 151-161(2013). Y. Chitrala, C. Moreno, C. Sondergeld, et. al., “An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions,” J. Pet. Sci. Eng., 108, 151-161(2013).
8.
Zurück zum Zitat V.V. Zubkov, V.F. Roshelev, and A.M. Linkov, “Numerical modeling of hydraulic fracture initiation and development,” J. Mini .Sci., 43(1), 40-56 (2007).CrossRef V.V. Zubkov, V.F. Roshelev, and A.M. Linkov, “Numerical modeling of hydraulic fracture initiation and development,” J. Mini .Sci., 43(1), 40-56 (2007).CrossRef
9.
Zurück zum Zitat N. Zangeneh, E. Eberhardt, and R.M. Bustin, “Application of the distinct-element method to investigate the influence of natural fractures and in situ stresses on hydro-fracture propagation,” 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 1-8 (2012). N. Zangeneh, E. Eberhardt, and R.M. Bustin, “Application of the distinct-element method to investigate the influence of natural fractures and in situ stresses on hydro-fracture propagation,” 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 1-8 (2012).
10.
Zurück zum Zitat Y. E. Aimene and J.A. Nairn, “Modeling multiple hydraulic fractures interacting with natural fractures using the material point method,” Society of Petroleum Engineers, 2014. Y. E. Aimene and J.A. Nairn, “Modeling multiple hydraulic fractures interacting with natural fractures using the material point method,” Society of Petroleum Engineers, 2014.
11.
Zurück zum Zitat S.H. Advani, T.S. Lee, and J.K. Lee, “Three-dimensional modeling of hydraulic fractures in layered media: Part I - Finite Element Formulations,” J. Energy Res. Technol., 112(1), 1-9 (1990).CrossRef S.H. Advani, T.S. Lee, and J.K. Lee, “Three-dimensional modeling of hydraulic fractures in layered media: Part I - Finite Element Formulations,” J. Energy Res. Technol., 112(1), 1-9 (1990).CrossRef
12.
Zurück zum Zitat A.D. Taleghani and J.E. Olson, “How natural fractures could affect hydraulic-fracture geometry,” SPE J., 19 (1), 161-171 (2014).CrossRef A.D. Taleghani and J.E. Olson, “How natural fractures could affect hydraulic-fracture geometry,” SPE J., 19 (1), 161-171 (2014).CrossRef
13.
Zurück zum Zitat L. Fei, L. Zhifeng, S. Yu, et al., “Deformation behavior between hydraulic and natural fractures using fully coupled hydromechanical model with XFEM,” Math. Probl. Eng., 2017, 1-12 (2017).CrossRef L. Fei, L. Zhifeng, S. Yu, et al., “Deformation behavior between hydraulic and natural fractures using fully coupled hydromechanical model with XFEM,” Math. Probl. Eng., 2017, 1-12 (2017).CrossRef
14.
Zurück zum Zitat S. Salimzadeh, A. Paluszny, H.M. Nick, et al., “A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems,” Geothermics, 71, 212-224 (2018).CrossRef S. Salimzadeh, A. Paluszny, H.M. Nick, et al., “A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems,” Geothermics, 71, 212-224 (2018).CrossRef
15.
Zurück zum Zitat B. Fan, J. Deng, H. Lin, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(1), 1-10 (2018). B. Fan, J. Deng, H. Lin, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(1), 1-10 (2018).
16.
Zurück zum Zitat B. Fan, J. Deng, L. Hai, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(6), 943-954 (2018).CrossRef B. Fan, J. Deng, L. Hai, et al., “Numerical simulation of hydraulic fracturing in weakly consolidated sandstone,” Chem. Technol. Fuels Oils, 53(6), 943-954 (2018).CrossRef
17.
Zurück zum Zitat Y. Fan, Y. Zhao, Z. Zhu, et al., “Stress intensity factors for a tunnel containing a radial crack under compression,” Adv. Mech. Eng., 9(12), 1-10 (2017).CrossRef Y. Fan, Y. Zhao, Z. Zhu, et al., “Stress intensity factors for a tunnel containing a radial crack under compression,” Adv. Mech. Eng., 9(12), 1-10 (2017).CrossRef
18.
Zurück zum Zitat Z. Luo, N. Zhang, L. Zhao, L. Yao and F. Liu, “Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures,” J. Pet. Sci. Eng., 171, 37-46 (2018).CrossRef Z. Luo, N. Zhang, L. Zhao, L. Yao and F. Liu, “Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures,” J. Pet. Sci. Eng., 171, 37-46 (2018).CrossRef
19.
Zurück zum Zitat E. Budyn, G Zi, S.N. Mo, et al., “A method for multiple crack growth in brittle materials without remeshing,” Int. J. Numer. Methods Eng., 61(10), 1741-1770 (2004).CrossRef E. Budyn, G Zi, S.N. Mo, et al., “A method for multiple crack growth in brittle materials without remeshing,Int. J. Numer. Methods Eng., 61(10), 1741-1770 (2004).CrossRef
20.
Zurück zum Zitat T.P. Fries. “A corrected XFEM approximation without problems in blending elements,” Int. J. Numer. Methods Eng., 75(5), 503-532 (2008).CrossRef T.P. Fries. “A corrected XFEM approximation without problems in blending elements,” Int. J. Numer. Methods Eng., 75(5), 503-532 (2008).CrossRef
21.
Zurück zum Zitat Y. Doug and Q. Ren, “ An extended finite element method for modeling hydraulic fracturing in gravity dam, J. Hydraul. Eng., 42(11), 1361-1367 (2011). Y. Doug and Q. Ren, “ An extended finite element method for modeling hydraulic fracturing in gravity dam, J. Hydraul. Eng., 42(11), 1361-1367 (2011).
22.
Zurück zum Zitat M. Sheng and G. Li, “Extended finite element modeling of hydraulic fracture propagation,” Eng. Mech., 31(10), 123-128 (2014). M. Sheng and G. Li, “Extended finite element modeling of hydraulic fracture propagation,” Eng. Mech., 31(10), 123-128 (2014).
23.
Zurück zum Zitat A.D. Taleghani and J.E. Olson, “Analysis of multistranded hydraulic fracture propagation: an improved model for the interaction between induced and natural fractures,” SPE Technical Conference & Exhibition. Society of Petroleum Engineers, 2009. A.D. Taleghani and J.E. Olson, “Analysis of multistranded hydraulic fracture propagation: an improved model for the interaction between induced and natural fractures,” SPE Technical Conference & Exhibition. Society of Petroleum Engineers, 2009.
Metadaten
Titel
Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs
verfasst von
Haiyang Zhao
Yaozeng Xie
Liqiang Zhao
Zhiyuan Liu
Yongshou Li
Nan Li
Publikationsdatum
19.03.2020
Verlag
Springer US
Erschienen in
Chemistry and Technology of Fuels and Oils / Ausgabe 6/2020
Print ISSN: 0009-3092
Elektronische ISSN: 1573-8310
DOI
https://doi.org/10.1007/s10553-020-01096-9

Weitere Artikel der Ausgabe 6/2020

Chemistry and Technology of Fuels and Oils 6/2020 Zur Ausgabe