Skip to main content
Top

2015 | OriginalPaper | Chapter

13. Sinusoidal Oscillator Realizations Using Other Types of Current Conveyors

Authors : Raj Senani, D. R. Bhaskar, A. K. Singh

Published in: Current Conveyors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A variety of SRCOs realized with numerous types of CCs introduced in the literature (such as OFC, MOCCII, DDCCCII, DVCC, DVCCC, ICCII, DVCCCA and FDCCII) have been discussed. The main focus has been on including some representative circuit configurations (from amongst a large number of oscillator circuits reported in literature) which possess some specific attractive features of practical interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Celma S, Martinez PA (1995) Transformation of sinusoidal oscillators using universal active elements. IEE Proc Circ Devices Syst 142:353–356CrossRefMATH Celma S, Martinez PA (1995) Transformation of sinusoidal oscillators using universal active elements. IEE Proc Circ Devices Syst 142:353–356CrossRefMATH
2.
go back to reference Celma S, Martinez PA (1995) On the limit cycle stability in current-mode oscillators. Int J Electron 79:163–169CrossRef Celma S, Martinez PA (1995) On the limit cycle stability in current-mode oscillators. Int J Electron 79:163–169CrossRef
3.
go back to reference Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundam E-81:973–975 Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundam E-81:973–975
4.
go back to reference Abuelma’atti MT, Al-Qahtani MA (1998) A new current-controlled multiphase sinusoidal oscillator using translinear current conveyors. IEEE Trans Circ Syst-II 45:881–885CrossRef Abuelma’atti MT, Al-Qahtani MA (1998) A new current-controlled multiphase sinusoidal oscillator using translinear current conveyors. IEEE Trans Circ Syst-II 45:881–885CrossRef
5.
go back to reference Soliman AM (1998) Current mode CCII oscillators using grounded capacitors and resistors. Int J Circ Theor Appl 26:431–438CrossRefMATH Soliman AM (1998) Current mode CCII oscillators using grounded capacitors and resistors. Int J Circ Theor Appl 26:431–438CrossRefMATH
6.
go back to reference Abuelma’atti MT, Tasadduq NA (1998) A novel current-controlled oscillator using translinear current conveyors. Frequenz 52:123–124 Abuelma’atti MT, Tasadduq NA (1998) A novel current-controlled oscillator using translinear current conveyors. Frequenz 52:123–124
7.
go back to reference Gupta SS, Senani R (2000) Grounded-capacitor current-mode SRCO-novel application of DVCCC. Electron Lett 36:195–196CrossRef Gupta SS, Senani R (2000) Grounded-capacitor current-mode SRCO-novel application of DVCCC. Electron Lett 36:195–196CrossRef
8.
go back to reference Papazoglou CA, Karybakas CA (2000) An electronically tunable sinusoidal oscillator suitable for high frequencies operation based on a single dual-output vriable-gain CCII. Analog Integr Circ Sig Process 23:31–44CrossRef Papazoglou CA, Karybakas CA (2000) An electronically tunable sinusoidal oscillator suitable for high frequencies operation based on a single dual-output vriable-gain CCII. Analog Integr Circ Sig Process 23:31–44CrossRef
9.
go back to reference Gupta SS, Senani R (2001) Comment: CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 148:335–336CrossRef Gupta SS, Senani R (2001) Comment: CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 148:335–336CrossRef
10.
go back to reference Toker A, Kuntman H, Cicekoglu O, Discigil M (2002) New oscillator topologies using inverting second-generation current conveyors. Turk J Electr Eng 10:119–129 Toker A, Kuntman H, Cicekoglu O, Discigil M (2002) New oscillator topologies using inverting second-generation current conveyors. Turk J Electr Eng 10:119–129
11.
go back to reference Chang CM, Al-Hashimi BM, Chen HP, Tu SH, Wan JA (2002) current mode single resistance controlled oscillators using only grounded passive components. Electron Lett 38:1071–1072CrossRef Chang CM, Al-Hashimi BM, Chen HP, Tu SH, Wan JA (2002) current mode single resistance controlled oscillators using only grounded passive components. Electron Lett 38:1071–1072CrossRef
12.
go back to reference Barthelemy H, Meillere S, Kussener E (2002) CMOS sinusoidal oscillators based on current-controlled current conveyors. Electron Lett 38:1254–1256CrossRef Barthelemy H, Meillere S, Kussener E (2002) CMOS sinusoidal oscillators based on current-controlled current conveyors. Electron Lett 38:1254–1256CrossRef
13.
go back to reference Hou CL, Chen YT, Huang CC (2003) The oscillators using a single DVCC. Tamkang J Sci Eng 6:183–187 Hou CL, Chen YT, Huang CC (2003) The oscillators using a single DVCC. Tamkang J Sci Eng 6:183–187
14.
go back to reference Aggarwal V (2004) Novel canonic current mode DDCC based SRCO synthesized using a genetic algorithm. Analog Integr Circ Sig Process 40:83–85CrossRef Aggarwal V (2004) Novel canonic current mode DDCC based SRCO synthesized using a genetic algorithm. Analog Integr Circ Sig Process 40:83–85CrossRef
15.
go back to reference Martinez PA, Martinez SBMM (2005) Generation of two integrator loop variable frequency sinusoidal oscillator. Int J Electron 92:619–629CrossRef Martinez PA, Martinez SBMM (2005) Generation of two integrator loop variable frequency sinusoidal oscillator. Int J Electron 92:619–629CrossRef
16.
go back to reference Maheshwari S, Khan IA (2005) Current-controlled third order quadrature oscillator. IEE Proc Circ Devices Syst 152:605–607CrossRef Maheshwari S, Khan IA (2005) Current-controlled third order quadrature oscillator. IEE Proc Circ Devices Syst 152:605–607CrossRef
17.
go back to reference Aggarwal V, Kilinc S, Cam U (2006) Minimum component SRCO and VFO using a single DVCCC. Analog Integr Circ Sig Process 49:181–185CrossRef Aggarwal V, Kilinc S, Cam U (2006) Minimum component SRCO and VFO using a single DVCCC. Analog Integr Circ Sig Process 49:181–185CrossRef
18.
go back to reference Horng JW, Hou CL, Chang CM, Lin YT, Shiu IC, Chiu WY (2006) First order allpass filter and sinusoidal oscillators using DDCCs. Int J Electron 93:457–466CrossRef Horng JW, Hou CL, Chang CM, Lin YT, Shiu IC, Chiu WY (2006) First order allpass filter and sinusoidal oscillators using DDCCs. Int J Electron 93:457–466CrossRef
19.
go back to reference Kilinc S, Jain V, Aggarwal V, Cam U (2006) Catalogue of variable frequency and single-resistance-controlled oscillators employing a single differential difference complementary current conveyors. Frequenz 60:142–150CrossRef Kilinc S, Jain V, Aggarwal V, Cam U (2006) Catalogue of variable frequency and single-resistance-controlled oscillators employing a single differential difference complementary current conveyors. Frequenz 60:142–150CrossRef
20.
go back to reference Horng JW, Hou CL, Chang CM, Chou HP, Lin CT, Wen YH (2006) Quadrature oscillators with grounded capacitors and resistors using FDCCIIs. ETRI J 28:486–494CrossRef Horng JW, Hou CL, Chang CM, Chou HP, Lin CT, Wen YH (2006) Quadrature oscillators with grounded capacitors and resistors using FDCCIIs. ETRI J 28:486–494CrossRef
21.
go back to reference Khan IA, Hasan S (2006) Current mode four phase quadrature oscillator using CCIIs. J Active Passiv Electron Devices 1:273–279 Khan IA, Hasan S (2006) Current mode four phase quadrature oscillator using CCIIs. J Active Passiv Electron Devices 1:273–279
22.
go back to reference Kumar P, Keskin AU, Pal K (2007) DVCC-based single element controlled oscillators using all-grounded components and simultaneous current–voltage mode outputs. Frequenz 61:141–144CrossRef Kumar P, Keskin AU, Pal K (2007) DVCC-based single element controlled oscillators using all-grounded components and simultaneous current–voltage mode outputs. Frequenz 61:141–144CrossRef
23.
go back to reference Horng JW, Hou CL, Chang CM, Cheng ST, Su HY (2008) Current or/and voltage-mode quadrature oscillators with grounded capacitors and resistors using FDCCIIs. WSEAS Trans Circ Syst 3:129–138 Horng JW, Hou CL, Chang CM, Cheng ST, Su HY (2008) Current or/and voltage-mode quadrature oscillators with grounded capacitors and resistors using FDCCIIs. WSEAS Trans Circ Syst 3:129–138
24.
go back to reference Toker A, Ozoguz S (2008) Comment on Fist order all pass filter and sinusoidal oscillators using DDCCs. Int J Electron 95:867CrossRef Toker A, Ozoguz S (2008) Comment on Fist order all pass filter and sinusoidal oscillators using DDCCs. Int J Electron 95:867CrossRef
25.
go back to reference Pandey N, Paul SK (2008) A novel electronically tunable sinusoidal oscillator based on CCCII (−IR). J Active Passiv Electron Devices 3:135–141 Pandey N, Paul SK (2008) A novel electronically tunable sinusoidal oscillator based on CCCII (−IR). J Active Passiv Electron Devices 3:135–141
26.
go back to reference Lahiri A (2009) Additional realizations of single-element-controlled oscillators using single ICCII-. Int J Comput Electr Eng 1:303–306CrossRef Lahiri A (2009) Additional realizations of single-element-controlled oscillators using single ICCII-. Int J Comput Electr Eng 1:303–306CrossRef
27.
go back to reference Soliman AM (2009) Generation of oscillators based on grounded capacitor current conveyors with minimum passive components. J Circ Syst Comput 18:857–873CrossRef Soliman AM (2009) Generation of oscillators based on grounded capacitor current conveyors with minimum passive components. J Circ Syst Comput 18:857–873CrossRef
28.
go back to reference Kumngern M, Dejhan K (2009) DDCC-based quadrature oscillator with grounded capacitors and resistors. Active Passiv Electron Comp: Article ID 987304, 4p Kumngern M, Dejhan K (2009) DDCC-based quadrature oscillator with grounded capacitors and resistors. Active Passiv Electron Comp: Article ID 987304, 4p
29.
go back to reference Maheshwari S (2010) Current-mode third-order quadrature oscillator. IET Circ Devices Syst 4:188–195CrossRef Maheshwari S (2010) Current-mode third-order quadrature oscillator. IET Circ Devices Syst 4:188–195CrossRef
30.
go back to reference Kumngern M, Chanwutitum J, Dejhan K (2010) Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integr Circ Sig process 65:327–334CrossRef Kumngern M, Chanwutitum J, Dejhan K (2010) Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integr Circ Sig process 65:327–334CrossRef
31.
go back to reference Sotner R, Hrubos Z, Slezak J, Dostal T (2010) Simply adjustable sinusoidal oscillator based on negative three port current conveyors. Radioengineering 19:446–454 Sotner R, Hrubos Z, Slezak J, Dostal T (2010) Simply adjustable sinusoidal oscillator based on negative three port current conveyors. Radioengineering 19:446–454
32.
go back to reference Lahiri A, Jaikla W, Siripruchyanun M (2010) Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integr Circ Sig Process 65:321–325CrossRef Lahiri A, Jaikla W, Siripruchyanun M (2010) Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integr Circ Sig Process 65:321–325CrossRef
33.
go back to reference Soliman AM (2010) On the generation of CCII and ICCII oscillators from three op-Amps oscillator. Microelectron J 41:680–687CrossRef Soliman AM (2010) On the generation of CCII and ICCII oscillators from three op-Amps oscillator. Microelectron J 41:680–687CrossRef
34.
go back to reference Soliman AM (2010) Generation of three oscillator families using CCII and ICCII. Int J Electron Commun (AEU) 64:880–887CrossRef Soliman AM (2010) Generation of three oscillator families using CCII and ICCII. Int J Electron Commun (AEU) 64:880–887CrossRef
35.
go back to reference Soliman AM (2010) Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integr Circ Sig Process 65:43–59CrossRef Soliman AM (2010) Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integr Circ Sig Process 65:43–59CrossRef
36.
go back to reference Lahiri A (2011) Current- mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors: a supplement. Analog Integr Circ Sig Process 68:129–131CrossRef Lahiri A (2011) Current- mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors: a supplement. Analog Integr Circ Sig Process 68:129–131CrossRef
37.
go back to reference Lahiri A (2011) Deriving (MO) (I) CCCII based second-order sinusoidal oscillators with non-interactive tuning laws using state variable method. Radioengineering 20:349–353 Lahiri A (2011) Deriving (MO) (I) CCCII based second-order sinusoidal oscillators with non-interactive tuning laws using state variable method. Radioengineering 20:349–353
38.
go back to reference Soliman AM (2011) Current conveyor based or unity gain cells based two integrator loop oscillators. Microelectron J 42:239–246MathSciNetCrossRef Soliman AM (2011) Current conveyor based or unity gain cells based two integrator loop oscillators. Microelectron J 42:239–246MathSciNetCrossRef
39.
go back to reference Soliman AM (2011) Transformation of a floating capacitor oscillator to a family of grounded capacitor oscillators. Int J Electron 98:289–300CrossRef Soliman AM (2011) Transformation of a floating capacitor oscillator to a family of grounded capacitor oscillators. Int J Electron 98:289–300CrossRef
40.
go back to reference Lahiri A (2011) New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoidal generator. Active Passiv Electron comp: Article ID 274394, 8p Lahiri A (2011) New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoidal generator. Active Passiv Electron comp: Article ID 274394, 8p
41.
go back to reference Beg P, Siddiqi MA, Ansari S (2011) Multi output filter and four phase sinusoidal oscillator using CMOS DX-MOCCII. Int J Electron 98:1185–1198CrossRef Beg P, Siddiqi MA, Ansari S (2011) Multi output filter and four phase sinusoidal oscillator using CMOS DX-MOCCII. Int J Electron 98:1185–1198CrossRef
42.
go back to reference Horng JW, Wang ZR, Yang TY (2011) Single ICCII sinusoidal oscillators employing grounded capacitors. Radioengineering 20:608–613 Horng JW, Wang ZR, Yang TY (2011) Single ICCII sinusoidal oscillators employing grounded capacitors. Radioengineering 20:608–613
43.
go back to reference Jaikla W, Siripruchyanun M, Lahiri A (2011) Resistorless dual-mode quadrature sinusoidal oscillator using a single active building blocks. Microelectron J 42:135–140CrossRef Jaikla W, Siripruchyanun M, Lahiri A (2011) Resistorless dual-mode quadrature sinusoidal oscillator using a single active building blocks. Microelectron J 42:135–140CrossRef
44.
go back to reference Horng JW (2011) Current/voltage-mode third orders quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Ind J Pure Appl Phys 49:494–498 Horng JW (2011) Current/voltage-mode third orders quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Ind J Pure Appl Phys 49:494–498
45.
go back to reference Maheshwari S, Chaturvedi B (2011) High output impedance CMQOs using DVCCs and grounded components. Int J Circ Theor Appl 39:427–435CrossRef Maheshwari S, Chaturvedi B (2011) High output impedance CMQOs using DVCCs and grounded components. Int J Circ Theor Appl 39:427–435CrossRef
46.
go back to reference Soliman AM (2012) On oscillator circuits using two output CCII, DVCC and FDCCII. J Active Passiv Electron Devices 7:325–343 Soliman AM (2012) On oscillator circuits using two output CCII, DVCC and FDCCII. J Active Passiv Electron Devices 7:325–343
47.
go back to reference Lahiri A (2012) Current-mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors. Analog Integr Circ Sig Process 71:303–311CrossRef Lahiri A (2012) Current-mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors. Analog Integr Circ Sig Process 71:303–311CrossRef
48.
go back to reference Chaturvedi B, Maheshwari S (2012) Second order mixed mode quadrature oscillator using DVCCs and grounded components. Int J Comput Appl 58:42–45 Chaturvedi B, Maheshwari S (2012) Second order mixed mode quadrature oscillator using DVCCs and grounded components. Int J Comput Appl 58:42–45
49.
go back to reference Maheshwari S, Verma R (2012) electronically tunable sinusoidal oscillator circuit. Active Passiv Electron Comp: Article ID719376, 6p Maheshwari S, Verma R (2012) electronically tunable sinusoidal oscillator circuit. Active Passiv Electron Comp: Article ID719376, 6p
50.
go back to reference Maheshwari S (2013) Voltage-mode four-phase sinusoidal generator and its useful extensions. Active Passiv Electron Comp: Article ID 685939, 8p Maheshwari S (2013) Voltage-mode four-phase sinusoidal generator and its useful extensions. Active Passiv Electron Comp: Article ID 685939, 8p
51.
go back to reference Chen HC, Chen CY (2014) CMOS realization of single-resistance-controlled and variable frequency dual-mode sinusoidal oscillators employing a single DVCCTA with all-grounded passive components. Microelectron J 45:226–238CrossRef Chen HC, Chen CY (2014) CMOS realization of single-resistance-controlled and variable frequency dual-mode sinusoidal oscillators employing a single DVCCTA with all-grounded passive components. Microelectron J 45:226–238CrossRef
52.
go back to reference Yucel F, Yuce E (2014) CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. Int J Electron Commun (AEU) 68:1–9CrossRef Yucel F, Yuce E (2014) CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. Int J Electron Commun (AEU) 68:1–9CrossRef
53.
go back to reference Elwan HO, Soliman AM (1997) A novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200CrossRef Elwan HO, Soliman AM (1997) A novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200CrossRef
54.
go back to reference Awad A, Soliman AM (1999) Inverting second generation current conveyors: the missing building blocks. Int J Electron 86:413–432CrossRef Awad A, Soliman AM (1999) Inverting second generation current conveyors: the missing building blocks. Int J Electron 86:413–432CrossRef
55.
go back to reference Al-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and its applications for analog VLSI. IEEE Trans Circ Syst-II 47:306–313CrossRef Al-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and its applications for analog VLSI. IEEE Trans Circ Syst-II 47:306–313CrossRef
56.
go back to reference Surakampontorn W, Riewruja V, Kumwachara K, Dejhan K (1991) Accurate CMOS based Current conveyors. IEEE Trans Instrum Meas 40:699CrossRef Surakampontorn W, Riewruja V, Kumwachara K, Dejhan K (1991) Accurate CMOS based Current conveyors. IEEE Trans Instrum Meas 40:699CrossRef
Metadata
Title
Sinusoidal Oscillator Realizations Using Other Types of Current Conveyors
Authors
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_13