Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2017

02-06-2016 | Original Research

Solutions for a class of fractional Hamiltonian systems with a parameter

Authors: Ziheng Zhang, César E. Torres Ledesma

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we are concerned with the existence of solutions for the following fractional Hamiltonian systems with a parameter
https://static-content.springer.com/image/art%3A10.1007%2Fs12190-016-1018-7/MediaObjects/12190_2016_1018_Equ91_HTML.gif
where \(\alpha \in (1/2,1)\), \(t\in {\mathbb {R}}\), \(u\in {\mathbb {R}}^n\), \(\lambda >0\) is a parameter, \(L\in C({\mathbb {R}},{\mathbb {R}}^{n^2})\) is a symmetric matrix for all \(t\in {\mathbb {R}}\), \(W\in C^1({\mathbb {R}}\times {\mathbb {R}}^n,{\mathbb {R}})\) and \(\nabla W(t,u)\) is the gradient of W(tu) at u. The novelty of this paper is that, assuming L(t) is a symmetric and positive semi-definite matrix for all \(t\in {\mathbb {R}}\), that is, \(L(t)\equiv 0\) is allowed to occur in some finite interval T of \({\mathbb {R}}\), W(tu) satisfies Ambrosetti–Rabinowitz condition and some other reasonable hypotheses, we show the existence of nontrivial solution of (FHS)\(_\lambda \), which vanishes on \({\mathbb {R}}\backslash T\) as \(\lambda \rightarrow \infty \), and converges to \(\tilde{u}\in H^\alpha ({\mathbb {R}})\); here \(\tilde{u}\in E_0^\alpha \) is a nontrivial solution of the Dirichlet BVP for fractional systems on the finite interval T. Recent results are generalized and significantly improved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agrawal, O., Tenreiro Machado, J., Sabatier, J.: Fractional Derivatives and Their Application: Nonlinear Dynamics. Springer, Berlin (2004) Agrawal, O., Tenreiro Machado, J., Sabatier, J.: Fractional Derivatives and Their Application: Nonlinear Dynamics. Springer, Berlin (2004)
2.
go back to reference Bai, Z.B., Lü, H.S.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetCrossRefMATH Bai, Z.B., Lü, H.S.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetCrossRefMATH
3.
go back to reference Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4(4), 693–727 (1991)MathSciNetCrossRefMATH Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4(4), 693–727 (1991)MathSciNetCrossRefMATH
4.
go back to reference Ding, Y.H.: Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25(11), 1095–1113 (1995)MathSciNetCrossRefMATH Ding, Y.H.: Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25(11), 1095–1113 (1995)MathSciNetCrossRefMATH
5.
go back to reference Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part. Differ. Equs 22, 58–76 (2006)MathSciNetMATH Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part. Differ. Equs 22, 58–76 (2006)MathSciNetMATH
6.
go back to reference Hilfer, R.: Applications of Fractional Calculus in Physics. World Science, Singapore (2000)CrossRefMATH Hilfer, R.: Applications of Fractional Calculus in Physics. World Science, Singapore (2000)CrossRefMATH
7.
go back to reference Izydorek, M., Janczewska, J.: Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differ. Equs 219(2), 375–389 (2005)CrossRefMATH Izydorek, M., Janczewska, J.: Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differ. Equs 219(2), 375–389 (2005)CrossRefMATH
8.
go back to reference Izydorek, M., Janczewska, J.: Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 335, 1119–1127 (2007)MathSciNetCrossRefMATH Izydorek, M., Janczewska, J.: Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 335, 1119–1127 (2007)MathSciNetCrossRefMATH
9.
go back to reference Jiang, W.H.: The existence of solutions for boundary value problems of fractional differential equatios at resonance. Nonlinear Anal. 74, 1987–1994 (2011)MathSciNetCrossRefMATH Jiang, W.H.: The existence of solutions for boundary value problems of fractional differential equatios at resonance. Nonlinear Anal. 74, 1987–1994 (2011)MathSciNetCrossRefMATH
10.
go back to reference Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurcat. Chaos 22(4), 1–17 (2012)MathSciNetCrossRefMATH Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurcat. Chaos 22(4), 1–17 (2012)MathSciNetCrossRefMATH
11.
go back to reference Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol 204, Singapore, 2006 Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol 204, Singapore, 2006
12.
go back to reference Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)CrossRefMATH Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)CrossRefMATH
13.
go back to reference Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley and Sons, New York (1993)MATH Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley and Sons, New York (1993)MATH
14.
15.
go back to reference Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equs 5(5), 1115–1120 (1992)MathSciNetMATH Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equs 5(5), 1115–1120 (1992)MathSciNetMATH
16.
go back to reference Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Pairs, 1897-1899 Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Pairs, 1897-1899
17.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
18.
go back to reference Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Provodence, RI, (1986) Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Provodence, RI, (1986)
19.
20.
go back to reference Rabinowitz, P.H., Tanaka, K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206(3), 473–499 (1991)MathSciNetCrossRefMATH Rabinowitz, P.H., Tanaka, K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206(3), 473–499 (1991)MathSciNetCrossRefMATH
21.
22.
go back to reference Torres, C.: Existence of solutions for a class of fractional Hamiltonian systems. Electron. J. Differ. Equs 2013(259), 1–12 (2013) Torres, C.: Existence of solutions for a class of fractional Hamiltonian systems. Electron. J. Differ. Equs 2013(259), 1–12 (2013)
23.
go back to reference Torres, C.: Existence of solutions for perturbed fractional Hamiltonian systems. J. Fract. Calc. Appl. 6(1), 62–70 (2015)MathSciNet Torres, C.: Existence of solutions for perturbed fractional Hamiltonian systems. J. Fract. Calc. Appl. 6(1), 62–70 (2015)MathSciNet
24.
go back to reference Torres, C.: Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential. arXiv:1503.06829v1 Torres, C.: Existence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential. arXiv:​1503.​06829v1
25.
go back to reference Torres, C.: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 1(1), 1–10 (2014)MathSciNet Torres, C.: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 1(1), 1–10 (2014)MathSciNet
26.
go back to reference Xu, J.F., O’Regan, D., Zhang, K.Y.: Multiple solutions for a class of fractional Hamiltonian systems. Fract. Calc. Appl. Anal. 18(1), 48–63 (2015)MathSciNetCrossRefMATH Xu, J.F., O’Regan, D., Zhang, K.Y.: Multiple solutions for a class of fractional Hamiltonian systems. Fract. Calc. Appl. Anal. 18(1), 48–63 (2015)MathSciNetCrossRefMATH
27.
go back to reference Zhang, S.Q.: Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl. 61, 1202–1208 (2011)MathSciNetCrossRefMATH Zhang, S.Q.: Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl. 61, 1202–1208 (2011)MathSciNetCrossRefMATH
28.
go back to reference Zhang, Z.H., Yuan, R.: Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Methods Appl. Sci. 37(13), 1873–1883 (2014)MathSciNetCrossRefMATH Zhang, Z.H., Yuan, R.: Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Methods Appl. Sci. 37(13), 1873–1883 (2014)MathSciNetCrossRefMATH
29.
go back to reference Zhang, Z.H., Yuan, R.: Solutions for subquadratic fractional Hamiltonian systems without coercive conditions. Math. Methods Appl. Sci. 37(18), 2934–2945 (2014)MathSciNetCrossRefMATH Zhang, Z.H., Yuan, R.: Solutions for subquadratic fractional Hamiltonian systems without coercive conditions. Math. Methods Appl. Sci. 37(18), 2934–2945 (2014)MathSciNetCrossRefMATH
30.
go back to reference Zhang, Z.H., Yuan, R.: Infinitely many solutions for subquadratic fractional Hamiltonian systems with potential changing sign. Adv. Nonlinear Anal. 4(1), 59–72 (2015)MathSciNetMATH Zhang, Z.H., Yuan, R.: Infinitely many solutions for subquadratic fractional Hamiltonian systems with potential changing sign. Adv. Nonlinear Anal. 4(1), 59–72 (2015)MathSciNetMATH
Metadata
Title
Solutions for a class of fractional Hamiltonian systems with a parameter
Authors
Ziheng Zhang
César E. Torres Ledesma
Publication date
02-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2017
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-016-1018-7

Other articles of this Issue 1-2/2017

Journal of Applied Mathematics and Computing 1-2/2017 Go to the issue

Premium Partner