Skip to main content
Top

2011 | OriginalPaper | Chapter

4. Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications

Authors : Mathieu Kociak, Odile Stéphan, Michael G. Walls, Marcel Tencé, Christian Colliex

Published in: Scanning Transmission Electron Microscopy

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we present the basis of spatially resolved electron energy-loss spectroscopy (EELS). We mainly focus on the spectrum-imaging (SPIM) technique. After summarising the information found in an EELS spectrum, the instrumentation and analysis techniques relevant to the SPIM are thoroughly discussed. Finally, applications involving a broad range of energy losses, typically 1–1000 eV, are discussed, in order to illustrate the whole field of scientific domains which is thus opened.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Although the terminology is not consistent in the literature, we will call interband transitions arising in the 13.5–100 eV range “semi-core losses”. The distinction with the core losses is blurred somewhat, but one practical difference is that the real part of ɛ is very close to unity for core losses and may depart from it significantly for semi-core losses.
 
2
When very high current is required, the first condenser can also be strongly excited, resulting in an additional contribution to the spherical aberration Cs, which has to be corrected by the Cs corrector. Note that the Cs corrector could be put after any of the lenses it has to correct, but obviously is put before the OL due to space limitations.
 
3
In some designs, such as the NION STEM (Krivanek et al. 2008), a coupling module can be added between the spectrometer and the projector system, serving various purposes: adapting the energy dispersion-dependent object point of the spectrometer, changing the camera length while keeping a constant HAADF angle (if the HAADF detector is between the projectors and the coupling module) and correcting third-order aberrations of the spectrometer.
 
4
To bin is the action of hardware summing different pixels at the time - then gaining readout speed, readout noise, but losing dynamics. In EELS, this is mostly done along the non-dispersing axis.
 
5
Although the acquisition format is of course non-negative integer, any subsequent treatment is likely to transform the data into real (possibly negative) numbers, so it is advisable to stick to a real number format.
 
6
We consider for simplicity here that all the inelastic signals are gathered in both types of experiment, which may of course not be the case in real experiments, as discussed at various places in this chapter.
 
7
It is worth noting the gain in current density available in a C 5-corrected machine, where the incident semi-angle can be as large as 50 mrd while maintaining sub nanometre spatial resolution.
 
8
With available currents in low-loss experiments increasing, CCD detectors might saturate so quickly that the limitation becomes the readout time rather than the acquisition time.
 
9
In the case of a planar system, the fact that the energy depends on the momentum is a relativistic effect. However, in other geometries (spheres (Ugarte et al. 1992) and cylinders (Kociak et al. 2000), for example), the energy is also momentum dependent in classical schemes.
 
10
In an EELS experiment, there is practically no way to distinguish between a gap and an exciton. What is experimentally measured is – at best! – the onset of a peak in the low-loss region. Whether it is a pure electronic gap or an exciton has to be determined through additional theoretical work.
 
Literature
go back to reference H. Abe, H. Kurata, K. Hojou, Spatially resolved electron energy-loss spectroscopy of the surface excitations on the insulating fine particle of aluminum oxide. J. Phys. Soc. Jpn. 69, 1553–1557 (2000)CrossRef H. Abe, H. Kurata, K. Hojou, Spatially resolved electron energy-loss spectroscopy of the surface excitations on the insulating fine particle of aluminum oxide. J. Phys. Soc. Jpn. 69, 1553–1557 (2000)CrossRef
go back to reference J. Aizpurua, A. Howie, F.J.G. De Abajo, Valence-electron energy loss near edges, truncated slabs, and junctions. Phys. Rev. B 60, 11149–11162 (1999)CrossRef J. Aizpurua, A. Howie, F.J.G. De Abajo, Valence-electron energy loss near edges, truncated slabs, and junctions. Phys. Rev. B 60, 11149–11162 (1999)CrossRef
go back to reference P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex, Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature 375, 564–567 (1995)CrossRef P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex, Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature 375, 564–567 (1995)CrossRef
go back to reference R. Arenal, F. De La Peña, O. Stéphan, M. Walls, M. Tencé, A. Loiseau, C. Colliex, Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. Ultramicroscopy 109, 32–38 (2008).CrossRef R. Arenal, F. De La Peña, O. Stéphan, M. Walls, M. Tencé, A. Loiseau, C. Colliex, Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. Ultramicroscopy 109, 32–38 (2008).CrossRef
go back to reference R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005)CrossRef R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005)CrossRef
go back to reference P.E. Batson, Simultaneous STEM imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)CrossRef P.E. Batson, Simultaneous STEM imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)CrossRef
go back to reference P.E. Batson, Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982)CrossRef P.E. Batson, Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982)CrossRef
go back to reference P.E. Batson, K.L. Kavanagh, J.M. Woodall, J.W. Mayer, Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys. Rev. Lett. 57, 2729–2732 (1986)CrossRef P.E. Batson, K.L. Kavanagh, J.M. Woodall, J.W. Mayer, Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys. Rev. Lett. 57, 2729–2732 (1986)CrossRef
go back to reference J.P.R. Bolton, M. Chen, Electron-energy-loss in multilayered slabs .2. parallel incidence. J. Phys. Condens. Matter 7, 3389–3403 (1995a)CrossRef J.P.R. Bolton, M. Chen, Electron-energy-loss in multilayered slabs .2. parallel incidence. J. Phys. Condens. Matter 7, 3389–3403 (1995a)CrossRef
go back to reference J.P.R. Bolton, M. Chen, Electron energy loss in multilayered slabs. Ultramicroscopy 60, 247–263 (1995b)CrossRef J.P.R. Bolton, M. Chen, Electron energy loss in multilayered slabs. Ultramicroscopy 60, 247–263 (1995b)CrossRef
go back to reference N. Bonnet, N. Brun, C. Colliex, Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77, 97–112 (1999)CrossRef N. Bonnet, N. Brun, C. Colliex, Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77, 97–112 (1999)CrossRef
go back to reference M. Bosman, V.J. Keast, J.L. Garcia-Munoz, A.J. D’alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)CrossRef M. Bosman, V.J. Keast, J.L. Garcia-Munoz, A.J. D’alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)CrossRef
go back to reference M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007)CrossRef M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007)CrossRef
go back to reference N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical-analysis using a scanning-transmission electron-microscope. Nature 366, 143–146 (1993)CrossRef N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical-analysis using a scanning-transmission electron-microscope. Nature 366, 143–146 (1993)CrossRef
go back to reference J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, J.M. Rickman, Scanning transmission electron microscopy analysis of grain boundaries in creep-resistant yttrium- and lanthanum-doped alumina microstructures. J. Am. Ceram. Soc. 82, 2865–2870 (1999)CrossRef J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, J.M. Rickman, Scanning transmission electron microscopy analysis of grain boundaries in creep-resistant yttrium- and lanthanum-doped alumina microstructures. J. Am. Ceram. Soc. 82, 2865–2870 (1999)CrossRef
go back to reference L. A. Bursill, P. A. Stadelmann, J. L. Peng, and S. Prawer. Surface plasmon observed for carbon nanotubes. Phys. Rev. B, 49:2882–2887, 1994.CrossRef L. A. Bursill, P. A. Stadelmann, J. L. Peng, and S. Prawer. Surface plasmon observed for carbon nanotubes. Phys. Rev. B, 49:2882–2887, 1994.CrossRef
go back to reference M. Couillard, M. Kociak, O. Stephan, G.A. Botton, C. Colliex, Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies. Phys. Rev. B 76, 165131 (2007)CrossRef M. Couillard, M. Kociak, O. Stephan, G.A. Botton, C. Colliex, Multiple-interface coupling effects in local electron-energy-loss measurements of band gap energies. Phys. Rev. B 76, 165131 (2007)CrossRef
go back to reference M. Couillard, A. Yurtsever, D.A. Muller, Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks. Phys. Rev. B 77, 085318 (2008) M. Couillard, A. Yurtsever, D.A. Muller, Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks. Phys. Rev. B 77, 085318 (2008)
go back to reference A.J. Craven, M. Mackenzie, A. Cerezo, T. Godfrey, P.H. Clifton, Spectrum imaging and three-dimensional atom probe studies of fine particles in a vanadium micro-alloyed steel. Mater. Sci. Technol. 24, 641–650 (2008)CrossRef A.J. Craven, M. Mackenzie, A. Cerezo, T. Godfrey, P.H. Clifton, Spectrum imaging and three-dimensional atom probe studies of fine particles in a vanadium micro-alloyed steel. Mater. Sci. Technol. 24, 641–650 (2008)CrossRef
go back to reference FJG. De Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in Cherenkov radiation. Phys. Rev. B 69, 155420 (2004)CrossRef FJG. De Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in Cherenkov radiation. Phys. Rev. B 69, 155420 (2004)CrossRef
go back to reference A. Dereux, C. Girard, J.C. Weeber, Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775–7789 (2000)CrossRef A. Dereux, C. Girard, J.C. Weeber, Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775–7789 (2000)CrossRef
go back to reference L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, P. Royer, Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008)CrossRef L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, P. Royer, Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008)CrossRef
go back to reference T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008)CrossRef T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008)CrossRef
go back to reference R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, NY, 1986) R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, NY, 1986)
go back to reference S. Enouz, O. Stephan, J.L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7, 1856–1862 (2007)CrossRef S. Enouz, O. Stephan, J.L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7, 1856–1862 (2007)CrossRef
go back to reference S. Estrade, J. Arbiol, F. Peiro, I.C. Infante, F. Sanchez, J. Fontcuberta, F. De La Pena, M. Walls, C. Colliex, Cationic and charge segregation in La2/3Ca1/3MnO3 thin films grown on (001) and (110) SrTiO3. Appl. Phys. Lett. 93, 112505 (2008)CrossRef S. Estrade, J. Arbiol, F. Peiro, I.C. Infante, F. Sanchez, J. Fontcuberta, F. De La Pena, M. Walls, C. Colliex, Cationic and charge segregation in La2/3Ca1/3MnO3 thin films grown on (001) and (110) SrTiO3. Appl. Phys. Lett. 93, 112505 (2008)CrossRef
go back to reference F. J. GarcÍa De Abajo, J. Aizpurua, Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873–15884 (1997)CrossRef F. J. GarcÍa De Abajo, J. Aizpurua, Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873–15884 (1997)CrossRef
go back to reference F.J.G. Garcia de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008)CrossRef F.J.G. Garcia de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008)CrossRef
go back to reference M.H. Gass, A.J. Papworth, R. Beanland, T.J. Bullough, P.R. Chalker, Mapping the effective mass of electrons in III-V semiconductor quantum confined structures. Phys. Rev. B 73, 035312 (2006)CrossRef M.H. Gass, A.J. Papworth, R. Beanland, T.J. Bullough, P.R. Chalker, Mapping the effective mass of electrons in III-V semiconductor quantum confined structures. Phys. Rev. B 73, 035312 (2006)CrossRef
go back to reference A. Gloter, A. Douiri, M. Tence, C. Colliex, Improving energy resolution of EELS spectra: an alternative to the monochromator solution. Ultramicroscopy 96, 385–400 (2003)CrossRef A. Gloter, A. Douiri, M. Tence, C. Colliex, Improving energy resolution of EELS spectra: an alternative to the monochromator solution. Ultramicroscopy 96, 385–400 (2003)CrossRef
go back to reference A. Gloter, M. Zbinden, F. Guyot, F. Gaill, C. Colliex, TEM-EELS study of natural ferrihydrite from geological-biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004)CrossRef A. Gloter, M. Zbinden, F. Guyot, F. Gaill, C. Colliex, TEM-EELS study of natural ferrihydrite from geological-biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004)CrossRef
go back to reference F. Goulhen, A. Gloter, F. Guyot, M. Bruschi, Cr(vi) detoxification by Desulfovibrio vulgaris strain Hildenborough: Microbe-metal interactions studies. Appl. Microbiol. Biotechnol. 71, 892–897 (2006)CrossRef F. Goulhen, A. Gloter, F. Guyot, M. Bruschi, Cr(vi) detoxification by Desulfovibrio vulgaris strain Hildenborough: Microbe-metal interactions studies. Appl. Microbiol. Biotechnol. 71, 892–897 (2006)CrossRef
go back to reference J.A. Hunt, D.B. Williams, Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73 (1991)CrossRef J.A. Hunt, D.B. Williams, Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73 (1991)CrossRef
go back to reference J.A. Hunt, M.M. Disko, S.K. Behal, R.D. Leapman, Electron-energy-loss chemical imaging of polymer phases. Ultramicroscopy 58, 55–64 (1995)CrossRef J.A. Hunt, M.M. Disko, S.K. Behal, R.D. Leapman, Electron-energy-loss chemical imaging of polymer phases. Ultramicroscopy 58, 55–64 (1995)CrossRef
go back to reference C. Jeanguillaume, C. Colliex, Spectrum-image - the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252 (1989)CrossRef C. Jeanguillaume, C. Colliex, Spectrum-image - the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252 (1989)CrossRef
go back to reference I.R. Khan, D. Cunningham, S. Lazar, D. Graham, W.E. Smith, D.W. McComb, A tem and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discuss. 132, 171–178 (2006)CrossRef I.R. Khan, D. Cunningham, S. Lazar, D. Graham, W.E. Smith, D.W. McComb, A tem and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discuss. 132, 171–178 (2006)CrossRef
go back to reference K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)CrossRef K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)CrossRef
go back to reference M. Kociak, L. Henrard, O. Stephan, K. Suenaga, C. Colliex, Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Phys. Rev. B 61, 13936–13944 (2000)CrossRef M. Kociak, L. Henrard, O. Stephan, K. Suenaga, C. Colliex, Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Phys. Rev. B 61, 13936–13944 (2000)CrossRef
go back to reference M. Kociak, O. Stephan, L. Henrard, V. Charbois, A. Rothschild, R. Tenne, C. Colliex, Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys. Rev. Lett. 8707, 075501 (2001)CrossRef M. Kociak, O. Stephan, L. Henrard, V. Charbois, A. Rothschild, R. Tenne, C. Colliex, Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys. Rev. Lett. 8707, 075501 (2001)CrossRef
go back to reference K. Imura, H. Okamoto, Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials. Bull. Chem. Soc. Jpn. 81, 659–675 (2008)CrossRef K. Imura, H. Okamoto, Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials. Bull. Chem. Soc. Jpn. 81, 659–675 (2008)CrossRef
go back to reference L.F. Kourkoutis, Y. Hotta, T. Susaki, H.Y. Hwang, D.A. Muller, Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4. Phys. Rev. Lett. 97, 256803 (2006) L.F. Kourkoutis, Y. Hotta, T. Susaki, H.Y. Hwang, D.A. Muller, Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4. Phys. Rev. Lett. 97, 256803 (2006)
go back to reference O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008)CrossRef O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008)CrossRef
go back to reference P. Laquerriere, J. Michel, G. Balossier, and B. Chenais. Light elements quantification in stimulated cells cryosections studied by electron probe microanalysis. Micron, 33, 597–603, 2002.CrossRef P. Laquerriere, J. Michel, G. Balossier, and B. Chenais. Light elements quantification in stimulated cells cryosections studied by electron probe microanalysis. Micron, 33, 597–603, 2002.CrossRef
go back to reference R.D. Leapman, Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc.-Oxf. 210, 5–15 (2003)CrossRef R.D. Leapman, Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc.-Oxf. 210, 5–15 (2003)CrossRef
go back to reference R.D. Leapman, N.W. Rizzo, Towards single atom analysis of biological structures. Ultramicroscopy 78, 251–268 (1999)CrossRef R.D. Leapman, N.W. Rizzo, Towards single atom analysis of biological structures. Ultramicroscopy 78, 251–268 (1999)CrossRef
go back to reference R.D. Leapman, R.L. Ornberg, Quantitative electron-energy loss spectroscopy in biology. Ultramicroscopy 24, 251–268 (1988)CrossRef R.D. Leapman, R.L. Ornberg, Quantitative electron-energy loss spectroscopy in biology. Ultramicroscopy 24, 251–268 (1988)CrossRef
go back to reference A.A. Lucas, J.P. Vigneron, Theory of electron energy loss spectroscopy from surfaces of anisotropic materials. Solid State Commun. 49, 327–330 (1984)CrossRef A.A. Lucas, J.P. Vigneron, Theory of electron energy loss spectroscopy from surfaces of anisotropic materials. Solid State Commun. 49, 327–330 (1984)CrossRef
go back to reference A.A. Lucas, J.P. Vigneron, S.E. Donnelly, J.C. Rife, Theoretical interpretation of the vacuum ultraviolet reflectance of liquid-helium and of the absorption-spectra of helium microbubbles in aluminum. Phys. Rev. B 28, 2485–2496 (1983) A.A. Lucas, J.P. Vigneron, S.E. Donnelly, J.C. Rife, Theoretical interpretation of the vacuum ultraviolet reflectance of liquid-helium and of the absorption-spectra of helium microbubbles in aluminum. Phys. Rev. B 28, 2485–2496 (1983)
go back to reference M. Mackenzie, A.J. Craven, C.L. Collins, Nanoanalysis of very fine VN precipitates in steel. Scripta Mater. 54, 1–5 (2006)CrossRef M. Mackenzie, A.J. Craven, C.L. Collins, Nanoanalysis of very fine VN precipitates in steel. Scripta Mater. 54, 1–5 (2006)CrossRef
go back to reference T. Manoubi, M. Tence, M.G. Walls, C. Colliex, Curve fitting methods for quantitative-analysis in electron-energy loss spectroscopy. Microsc. Microanal. Microstruct. 1, 23–39 (1990)CrossRef T. Manoubi, M. Tence, M.G. Walls, C. Colliex, Curve fitting methods for quantitative-analysis in electron-energy loss spectroscopy. Microsc. Microanal. Microstruct. 1, 23–39 (1990)CrossRef
go back to reference J.L. Maurice, D. Imhoff, J.P. Contoury, C. Colliex, Interfaces in 100 epitaxial heterostructures of perovskite oxides. Philos. Mag. 86, 2127–2146 (2006)CrossRef J.L. Maurice, D. Imhoff, J.P. Contoury, C. Colliex, Interfaces in 100 epitaxial heterostructures of perovskite oxides. Philos. Mag. 86, 2127–2146 (2006)CrossRef
go back to reference A.J. McGibbon, Inst. Phys. Conf. Ser. 119, 109 (1991) A.J. McGibbon, Inst. Phys. Conf. Ser. 119, 109 (1991)
go back to reference F. Morales, F.M.F. De Groot, O.L.J. Gijzeman, A. Mens, O. Stephan, B.M. Weckhuysen, Mn promotion effects in CO/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J. Catal. 230, 301–308 (2005)CrossRef F. Morales, F.M.F. De Groot, O.L.J. Gijzeman, A. Mens, O. Stephan, B.M. Weckhuysen, Mn promotion effects in CO/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J. Catal. 230, 301–308 (2005)CrossRef
go back to reference P. Moreau, N. Brun, C.A. Walsh, C. Colliex, A. Howie, Relativistic effects in electron-energy-loss-spectroscopy observations of the Si/SiO2 interface plasmon peak. Phys. Rev. B 56, 6774–6781 (1997)CrossRef P. Moreau, N. Brun, C.A. Walsh, C. Colliex, A. Howie, Relativistic effects in electron-energy-loss-spectroscopy observations of the Si/SiO2 interface plasmon peak. Phys. Rev. B 56, 6774–6781 (1997)CrossRef
go back to reference D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman, Atomic scale observations of metal-induced gap states at 222MgO/Cu interfaces. Phys. Rev. Lett. 80, 4741–4744 (1998)CrossRef D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman, Atomic scale observations of metal-induced gap states at 222MgO/Cu interfaces. Phys. Rev. Lett. 80, 4741–4744 (1998)CrossRef
go back to reference D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)CrossRef D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)CrossRef
go back to reference D.A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)CrossRef D.A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)CrossRef
go back to reference D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp(2) and sp(3) states of carbon at subnanometer spatial-resolution. Nature 366, 725–727 (1993)CrossRef D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp(2) and sp(3) states of carbon at subnanometer spatial-resolution. Nature 366, 725–727 (1993)CrossRef
go back to reference J. Nelayah, M. Kociak, O. Stephan, F.J.G. De Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)CrossRef J. Nelayah, M. Kociak, O. Stephan, F.J.G. De Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)CrossRef
go back to reference F. Ouyang, P.E. Batson, M. Isaacson, Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992)CrossRef F. Ouyang, P.E. Batson, M. Isaacson, Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992)CrossRef
go back to reference M.P. Oxley, E.C. Cosgriff, L.J. Allen, Nonlocality in imaging. Phys. Rev. Lett. 94, 203906 (2005)CrossRef M.P. Oxley, E.C. Cosgriff, L.J. Allen, Nonlocality in imaging. Phys. Rev. Lett. 94, 203906 (2005)CrossRef
go back to reference B. Rafferty, L.M. Brown, Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B 58, 10326–10337 (1998)CrossRef B. Rafferty, L.M. Brown, Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B 58, 10326–10337 (1998)CrossRef
go back to reference A. Rivacoba, N. Zabala, J. Aizpurua, Image potential in scanning transmission electron microscopy. Prog. Surf. Sci. 65, 1–64 (2000)CrossRef A. Rivacoba, N. Zabala, J. Aizpurua, Image potential in scanning transmission electron microscopy. Prog. Surf. Sci. 65, 1–64 (2000)CrossRef
go back to reference L. Samet, D. Imhoff, J.L. Maurice, J.P. Contour, A. Gloter, T. Manoubi, A. Fert, C. Colliex, Eels study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions. Eur. Phys. J. B 34, 179–192 (2003)CrossRef L. Samet, D. Imhoff, J.L. Maurice, J.P. Contour, A. Gloter, T. Manoubi, A. Fert, C. Colliex, Eels study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions. Eur. Phys. J. B 34, 179–192 (2003)CrossRef
go back to reference B. Schaffer, G. Kothleitner, W. Grogger, EFTEM spectrum imaging at high-energy resolution. Ultramicroscopy 106, 1129–1138 (2006)CrossRef B. Schaffer, G. Kothleitner, W. Grogger, EFTEM spectrum imaging at high-energy resolution. Ultramicroscopy 106, 1129–1138 (2006)CrossRef
go back to reference S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tence, C. Colliex, Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS. Ultramicroscopy 108, 346–357 (2008)CrossRef S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tence, C. Colliex, Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS. Ultramicroscopy 108, 346–357 (2008)CrossRef
go back to reference S. Schamm, G. Zanchi, Study of the dielectric properties near the band gap by VEELS: Gap measurement in bulk materials. Ultramicroscopy 96, 559–564 (2003)CrossRef S. Schamm, G. Zanchi, Study of the dielectric properties near the band gap by VEELS: Gap measurement in bulk materials. Ultramicroscopy 96, 559–564 (2003)CrossRef
go back to reference J. Scott, P.J. Thomas, M. Mackenzie, S. McFadzean, J. Wilbrink, A.J. Craven, W.A.P. Nicholson, Ultramicroscopy 108, 1586 (2008)CrossRef J. Scott, P.J. Thomas, M. Mackenzie, S. McFadzean, J. Wilbrink, A.J. Craven, W.A.P. Nicholson, Ultramicroscopy 108, 1586 (2008)CrossRef
go back to reference A. Seepujak, U. Bangert, A.J. Harvey, P.M.F.J. Costa, M.L.H. Green, Redshift and optical anisotropy of collective pi-volume modes in multiwalled carbon nanotubes. Phys. Rev. B 74, 075402 (2006) A. Seepujak, U. Bangert, A.J. Harvey, P.M.F.J. Costa, M.L.H. Green, Redshift and optical anisotropy of collective pi-volume modes in multiwalled carbon nanotubes. Phys. Rev. B 74, 075402 (2006)
go back to reference L.J. Sherry, R.C. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006)CrossRef L.J. Sherry, R.C. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006)CrossRef
go back to reference S.-Y. Chen, A. Gloter, A. Zobelli, L. Wang, C.-H. Chen, C. Colliex, Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process. Phys. Rev. B 79, 104103 (2009)CrossRef S.-Y. Chen, A. Gloter, A. Zobelli, L. Wang, C.-H. Chen, C. Colliex, Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process. Phys. Rev. B 79, 104103 (2009)CrossRef
go back to reference O. Stephan, D. Taverna, M. Kociak, K. Suenaga, L. Henrard, C. Colliex, Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: from multiwalled to single-walled nanotubes. Phys. Rev. B 66, 155422 (2002)CrossRef O. Stephan, D. Taverna, M. Kociak, K. Suenaga, L. Henrard, C. Colliex, Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: from multiwalled to single-walled nanotubes. Phys. Rev. B 66, 155422 (2002)CrossRef
go back to reference O. Stephan, M. Kociak, L. Henrard, K. Suenaga, A. Gloter, M. Tence, E. Sandre, C. Colliex, Electron energy-loss spectroscopy on individual nanotubes. J. Electron Spectrosc. Relat. Phenom. 114, 209–217 (2001)CrossRef O. Stephan, M. Kociak, L. Henrard, K. Suenaga, A. Gloter, M. Tence, E. Sandre, C. Colliex, Electron energy-loss spectroscopy on individual nanotubes. J. Electron Spectrosc. Relat. Phenom. 114, 209–217 (2001)CrossRef
go back to reference O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994)CrossRef O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994)CrossRef
go back to reference T. Stockli, J.M. Bonard, A. Chatelain, Z.L. Wang, P. Stadelmann, Interference and interactions in multiwall nanotubes. Physica-B 280, 4844–4847 (2000) T. Stockli, J.M. Bonard, A. Chatelain, Z.L. Wang, P. Stadelmann, Interference and interactions in multiwall nanotubes. Physica-B 280, 4844–4847 (2000)
go back to reference K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)CrossRef K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)CrossRef
go back to reference D. Taverna, M. Kociak, O. Stephan, A. Fabre, E. Finot, B. Decamps, C. Colliex. Probing physical properties of confined fluids within individual nanobubbles. Phys. Rev. Lett. 1, 035301 (2008)CrossRef D. Taverna, M. Kociak, O. Stephan, A. Fabre, E. Finot, B. Decamps, C. Colliex. Probing physical properties of confined fluids within individual nanobubbles. Phys. Rev. Lett. 1, 035301 (2008)CrossRef
go back to reference D. Taverna, M. Kociak, V. Charbois, L. Henrard, Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Phys. Rev. B 66, 235419 (2002)CrossRef D. Taverna, M. Kociak, V. Charbois, L. Henrard, Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Phys. Rev. B 66, 235419 (2002)CrossRef
go back to reference D. Taverna, M. Kociak, V. Charbois, L. Henrard, O. Stephan, C. Colliex, Simulations of electron energy-loss spectra of an electron passing near a locally anisotropic nanotube. J. Electron Spectrosc. Relat. Phenom. 129, 293–298 (2003)CrossRef D. Taverna, M. Kociak, V. Charbois, L. Henrard, O. Stephan, C. Colliex, Simulations of electron energy-loss spectra of an electron passing near a locally anisotropic nanotube. J. Electron Spectrosc. Relat. Phenom. 129, 293–298 (2003)CrossRef
go back to reference M. Tencé, H. Pinna, T. Birou, L. Guiraud, A. Mayet, C. Pertel, V. Serin, C. Colliex, in Proceedings of IMC 16, H. Ichinose, T. Sasaki, ed. (2006) (Publication Committee of IMC16) pp. 824–825 M. Tencé, H. Pinna, T. Birou, L. Guiraud, A. Mayet, C. Pertel, V. Serin, C. Colliex, in Proceedings of IMC 16, H. Ichinose, T. Sasaki, ed. (2006) (Publication Committee of IMC16) pp. 824–825
go back to reference M. Tence, M. Quartuccio, C. Colliex, PEELS compositional profiling and mapping at nanometer spatial-resolution. Ultramicroscopy 58, 42–54 (1995)CrossRef M. Tence, M. Quartuccio, C. Colliex, PEELS compositional profiling and mapping at nanometer spatial-resolution. Ultramicroscopy 58, 42–54 (1995)CrossRef
go back to reference D. Ugarte, C. Colliex, P. Trebbia, Surface-plasmon and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992)CrossRef D. Ugarte, C. Colliex, P. Trebbia, Surface-plasmon and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992)CrossRef
go back to reference M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)CrossRef M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)CrossRef
go back to reference J. Verbeeck, S. Van Aert, Model based quantification of EELS spectra. Ultramicroscopy 101, 207–224 (2004)CrossRef J. Verbeeck, S. Van Aert, Model based quantification of EELS spectra. Ultramicroscopy 101, 207–224 (2004)CrossRef
go back to reference C.A. Walsh, J. Yuan, L.M. Brown, A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy. Philos. Mag. A 80, 1507–1543 (2000)CrossRef C.A. Walsh, J. Yuan, L.M. Brown, A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy. Philos. Mag. A 80, 1507–1543 (2000)CrossRef
go back to reference Z.L. Wang, Valence electron excitations and plasmon oscillations in thin films, surfaces, interfaces and small particles (vol 27, p 265, 1996). Micron 28, 505–506 (1997)CrossRef Z.L. Wang, Valence electron excitations and plasmon oscillations in thin films, surfaces, interfaces and small particles (vol 27, p 265, 1996). Micron 28, 505–506 (1997)CrossRef
go back to reference S. Yakovlev, M. Libera, Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Micron 39, 734–740 (2008)CrossRef S. Yakovlev, M. Libera, Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Micron 39, 734–740 (2008)CrossRef
go back to reference N. Yamamoto, K. Araya, F.J.G. De Abajo, Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 6420, 205419 (2001)CrossRef N. Yamamoto, K. Araya, F.J.G. De Abajo, Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 6420, 205419 (2001)CrossRef
go back to reference N. Zabala, A. Rivacoba, P.M. Echenique, Coupling effects in the excitations by an external electron beam near close particles. Phys. Rev. B 56, 7623–7635 (1997)CrossRef N. Zabala, A. Rivacoba, P.M. Echenique, Coupling effects in the excitations by an external electron beam near close particles. Phys. Rev. B 56, 7623–7635 (1997)CrossRef
go back to reference N. Zabala, A. Rivacoba, P.M. Echenique, Energy loss of electrons travelling through cylindrical holes. Surf. Sci. 209, 465–480 (1989)CrossRef N. Zabala, A. Rivacoba, P.M. Echenique, Energy loss of electrons travelling through cylindrical holes. Surf. Sci. 209, 465–480 (1989)CrossRef
go back to reference Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973–975 (1998)CrossRef Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973–975 (1998)CrossRef
Metadata
Title
Spatially Resolved EELS: The Spectrum-Imaging Technique and Its Applications
Authors
Mathieu Kociak
Odile Stéphan
Michael G. Walls
Marcel Tencé
Christian Colliex
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7200-2_4