Skip to main content
Top

2023 | OriginalPaper | Chapter

13. Spectroscopic Gas Sensing Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spectroscopic gas sensing is becoming popular in wide range of areas including urban and industrial emission, environmental monitoring, chemical and industrial process control, medical diagnostics, homeland security and scientific research. Spectroscopy in the mid-infrared region (MIR, 2.5–25 μm) is attractive due to the strong fundamental ro-vibrational bands and the highly specific molecular signature, which allows both identification and quantification of the molecular species. In this chapter, we introduce the spectroscopic gas sensing systems based on a tunable laser. After a brief overview of the technical background (Sect. 13.1) and the principle of spectroscopy (Sect. 13.2), we discuss the system configurations, including pump suction system, diffusion gas sensors, open path sensing system and spectroscopic imaging systems. Two types of especially distinctive gas sensing, that is, miniaturized hollow waveguide gas sensor and standoff sensing with non-cooperative targets, are reviewed in this section. Recent developments of spectroscopic applications with II–VI lasers are in Sect. 13.4. Section 13.5 gives briefly the conclusion and prospects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Noxon J. Nitrogen dioxide in the stratosphere and troposphere measured by ground based absorption spectroscopy. Science. 1975;189:547.CrossRefADS Noxon J. Nitrogen dioxide in the stratosphere and troposphere measured by ground based absorption spectroscopy. Science. 1975;189:547.CrossRefADS
8.
go back to reference Sigrist MW. Air monitoring by spectroscopic techniques. New York: Wiley; 1994. p. 335–8. Sigrist MW. Air monitoring by spectroscopic techniques. New York: Wiley; 1994. p. 335–8.
17.
go back to reference Robert C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths. Appl Opt. 2007;46(22):5408–18.CrossRefADS Robert C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths. Appl Opt. 2007;46(22):5408–18.CrossRefADS
18.
go back to reference Toptica 2009 Product specification. Compact Herriott cell for absorption spectroscopy: CMP-30 Toptica Photonics AG, Munchen, Germany. www.toptica.com. Toptica 2009 Product specification. Compact Herriott cell for absorption spectroscopy: CMP-30 Toptica Photonics AG, Munchen, Germany. www.​toptica.​com.
19.
go back to reference Mcmanus JB, Kebabian PL, Zahniser MS. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl Opt. 1995;34(18):3336–48.CrossRefADS Mcmanus JB, Kebabian PL, Zahniser MS. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl Opt. 1995;34(18):3336–48.CrossRefADS
20.
go back to reference White JU. Long optical paths of large aperture. J Opt Soc Am B (1917–1983). 1942;32(5):285.CrossRef White JU. Long optical paths of large aperture. J Opt Soc Am B (1917–1983). 1942;32(5):285.CrossRef
21.
go back to reference Grassi L, Guzzi R. Theoretical and practical consideration of the construction of a zero-geometric-loss multiple-pass cell based on the use of monolithic multiple-face retroreflectors. Appl Opt. 2001;40(33):6062.CrossRefADS Grassi L, Guzzi R. Theoretical and practical consideration of the construction of a zero-geometric-loss multiple-pass cell based on the use of monolithic multiple-face retroreflectors. Appl Opt. 2001;40(33):6062.CrossRefADS
22.
go back to reference Steyert DW, Sirota JM, Mickelson ME, Reuter DC. Two new long-pass cells for infrared and visible spectroscopy. Rev Sci Instrum. 2001;72(12):4337–43.CrossRefADS Steyert DW, Sirota JM, Mickelson ME, Reuter DC. Two new long-pass cells for infrared and visible spectroscopy. Rev Sci Instrum. 2001;72(12):4337–43.CrossRefADS
23.
go back to reference Guo Y, Sun L. Compact optical multipass matrix system design based on slicer mirrors. Appl Opt. 2018;57:1174–81.CrossRefADS Guo Y, Sun L. Compact optical multipass matrix system design based on slicer mirrors. Appl Opt. 2018;57:1174–81.CrossRefADS
24.
go back to reference Shen C, Zhang Y, Ni J. Compact cylindrical multipass cell for laser absorption spectroscopy. Chin Opt Lett. 2013;11:091201.CrossRefADS Shen C, Zhang Y, Ni J. Compact cylindrical multipass cell for laser absorption spectroscopy. Chin Opt Lett. 2013;11:091201.CrossRefADS
25.
go back to reference Kühnreich B, Höh M, Wagner S, Ebert V. Direct single-mode fibre-coupled miniature White cell for laser absorption spectroscopy. Rev Sci Instrum. 2016;87:023111.CrossRefADS Kühnreich B, Höh M, Wagner S, Ebert V. Direct single-mode fibre-coupled miniature White cell for laser absorption spectroscopy. Rev Sci Instrum. 2016;87:023111.CrossRefADS
26.
go back to reference Mangold M, Tuzson B, Hundt M, Jágerská J, Looser H, Emmenegger L. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis. J Opt Soc Am. 2016;33(5):913.CrossRef Mangold M, Tuzson B, Hundt M, Jágerská J, Looser H, Emmenegger L. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis. J Opt Soc Am. 2016;33(5):913.CrossRef
27.
go back to reference Manninen A, Tuzson B, Looser H, Bonetti Y, Emmenegger L. Versatile multipass cell for laser spectroscopic trace gas analysis. Appl Phys B Lasers Opt. 2012;109(3):461–6.CrossRefADS Manninen A, Tuzson B, Looser H, Bonetti Y, Emmenegger L. Versatile multipass cell for laser spectroscopic trace gas analysis. Appl Phys B Lasers Opt. 2012;109(3):461–6.CrossRefADS
28.
go back to reference Chang H, Feng S, Qiu X, Meng H, Guo G, He X, et al. Implementation of the toroidal absorption cell with multi-layer patterns by a single ring surface. Opt Lett. 2020;45(21):5897–900.CrossRefADS Chang H, Feng S, Qiu X, Meng H, Guo G, He X, et al. Implementation of the toroidal absorption cell with multi-layer patterns by a single ring surface. Opt Lett. 2020;45(21):5897–900.CrossRefADS
29.
go back to reference Qu D, Gmachl C. Quasichaotic optical multipass cell. Phy Rev A. 2008;78(3):4061.CrossRef Qu D, Gmachl C. Quasichaotic optical multipass cell. Phy Rev A. 2008;78(3):4061.CrossRef
30.
go back to reference Li JY, Du ZH, Wang RX, Yang X, Song LM, Guo QH. Applications of hollow waveguide in spectroscopic gas sensing. Spectrosc Spectr Anal. 2017;37(7):2259–66. Li JY, Du ZH, Wang RX, Yang X, Song LM, Guo QH. Applications of hollow waveguide in spectroscopic gas sensing. Spectrosc Spectr Anal. 2017;37(7):2259–66.
31.
go back to reference Jaworski P. A review of antiresonant hollow-core fiber-assisted spectroscopy of gases. Sensors. 2021;21(16):5640.CrossRefADS Jaworski P. A review of antiresonant hollow-core fiber-assisted spectroscopy of gases. Sensors. 2021;21(16):5640.CrossRefADS
32.
go back to reference Li JY, Luo G, Du ZH, Ma YW. Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser. Sens Actuator B-Chem. 2018;255:3550–7.CrossRefADS Li JY, Luo G, Du ZH, Ma YW. Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser. Sens Actuator B-Chem. 2018;255:3550–7.CrossRefADS
33.
go back to reference Li JY, Du ZH, Zhang ZY, Song LM, Guo QH. Hollow waveguide-enhanced mid-infrared sensor for fast and sensitive ethylene detection. Sens Rev. 2017;37:82–7.CrossRefADS Li JY, Du ZH, Zhang ZY, Song LM, Guo QH. Hollow waveguide-enhanced mid-infrared sensor for fast and sensitive ethylene detection. Sens Rev. 2017;37:82–7.CrossRefADS
34.
go back to reference Xiong B, Du ZH, Liu L, Zhang ZY, Li JY, Cai QL. Hollow-waveguide-based carbon dioxide sensor for capnography. Chin Opt Lett. 2015;13(11):111201.CrossRefADS Xiong B, Du ZH, Liu L, Zhang ZY, Li JY, Cai QL. Hollow-waveguide-based carbon dioxide sensor for capnography. Chin Opt Lett. 2015;13(11):111201.CrossRefADS
35.
go back to reference Liu L, Du ZH, Li JY. Calibration of effective optical path lengthp for hollow-waveguide based gas cell using absorption spectroscopy. In: Proc. SPIE 10157, Infrared Technology and Applications, and Robot Sensing and Advanced Control, 101572K; 2016. https://doi.org/10.1117/12.2246928. Liu L, Du ZH, Li JY. Calibration of effective optical path lengthp for hollow-waveguide based gas cell using absorption spectroscopy. In: Proc. SPIE 10157, Infrared Technology and Applications, and Robot Sensing and Advanced Control, 101572K; 2016. https://​doi.​org/​10.​1117/​12.​2246928.
36.
go back to reference Li JY, Yang S, Du ZH, Wang RX, Yuan LM, Wang HY, et al. Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy. Opt Lasers Eng. 2019;121:80–6.CrossRef Li JY, Yang S, Du ZH, Wang RX, Yuan LM, Wang HY, et al. Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy. Opt Lasers Eng. 2019;121:80–6.CrossRef
37.
go back to reference Du ZH, Wang RX, Li JY. Preliminary investigation of the capillary adsorption for a hollow waveguide-based laser ammonia analyzer. In: Proc. SPIE 10157, Infrared Technology and Applications, and Robot Sensing and Advanced Control, 101572T; 2016. https://doi.org/10.1117/12.2247057. Du ZH, Wang RX, Li JY. Preliminary investigation of the capillary adsorption for a hollow waveguide-based laser ammonia analyzer. In: Proc. SPIE 10157, Infrared Technology and Applications, and Robot Sensing and Advanced Control, 101572T; 2016. https://​doi.​org/​10.​1117/​12.​2247057.
38.
go back to reference Du ZH, Wang SK, Li JY, Meng S, Wang JH. Towards high-precision hollow waveguide-based gas sensors adapting nonuniform pressure and immune to flow fluctuation. Sens Actuator B-Chem. 2020;308:127703.CrossRef Du ZH, Wang SK, Li JY, Meng S, Wang JH. Towards high-precision hollow waveguide-based gas sensors adapting nonuniform pressure and immune to flow fluctuation. Sens Actuator B-Chem. 2020;308:127703.CrossRef
39.
go back to reference Zhang L, Pang T, Zhang Z, Sun P, Xia H, Wu B, et al. A novel compact intrinsic safety full range Methane microprobe sensor using “trans-world” processing method based on near-infrared spectroscopy. Sens Actuator B-Chem. 2021;334:129680. 10.1016/j.snb.2021.129680CrossRef Zhang L, Pang T, Zhang Z, Sun P, Xia H, Wu B, et al. A novel compact intrinsic safety full range Methane microprobe sensor using “trans-world” processing method based on near-infrared spectroscopy. Sens Actuator B-Chem. 2021;334:129680. 10.1016/j.snb.2021.129680CrossRef
42.
go back to reference Li JY, Yu ZW, Du ZH, Ji Y, Liu C. Standoff chemical detection using laser absorption spectroscopy: a review. Remote Sens. 2020;12(17):2771.CrossRefADS Li JY, Yu ZW, Du ZH, Ji Y, Liu C. Standoff chemical detection using laser absorption spectroscopy: a review. Remote Sens. 2020;12(17):2771.CrossRefADS
43.
go back to reference Deutsch ER, Kotidis P, Zhu N, Goyal AK, Ye J, Mazurenko A, et al. Active and passive infrared spectroscopy for the detection of environmental threats. In: Proceedings of the Advanced Environmental, Chemical, and Biological Sensing Technologies XI. Baltimore, MD; 2014. p. 91060A. Deutsch ER, Kotidis P, Zhu N, Goyal AK, Ye J, Mazurenko A, et al. Active and passive infrared spectroscopy for the detection of environmental threats. In: Proceedings of the Advanced Environmental, Chemical, and Biological Sensing Technologies XI. Baltimore, MD; 2014. p. 91060A.
46.
go back to reference Wang T, Zhou T, Jia X. Remote sensing with laser spectrum radar. In: Proceedings of the Hyperspectral Remote Sensing Applications and Environmental Monitoring and Safety Testing Technology. Beijing; 2016. p. 101560C. Wang T, Zhou T, Jia X. Remote sensing with laser spectrum radar. In: Proceedings of the Hyperspectral Remote Sensing Applications and Environmental Monitoring and Safety Testing Technology. Beijing; 2016. p. 101560C.
49.
go back to reference Frish MB, Wainner RT, Laderer MC, Allen MG, Rutherford J, Wehnert P, et al. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting. In: Proceedings of the Next-Generation Spectroscopic Technologies VI. Baltimore, MD; 2013. p. 87260C. Frish MB, Wainner RT, Laderer MC, Allen MG, Rutherford J, Wehnert P, et al. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting. In: Proceedings of the Next-Generation Spectroscopic Technologies VI. Baltimore, MD; 2013. p. 87260C.
54.
go back to reference Wei CY, Pineda DI, Goldenstein CS, Spearrin RM. Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared. Opt Express. 2018;26(16):20944–51.CrossRefADS Wei CY, Pineda DI, Goldenstein CS, Spearrin RM. Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared. Opt Express. 2018;26(16):20944–51.CrossRefADS
55.
go back to reference Strahl T, Herbst J, Lambrecht A, Maier E, Steinebrunner J, Wöllenstein J. Methane leak detection by tunable laser spectroscopy and mid-infrared imaging. Appl Opt. 2021;60(15):C68–75.CrossRef Strahl T, Herbst J, Lambrecht A, Maier E, Steinebrunner J, Wöllenstein J. Methane leak detection by tunable laser spectroscopy and mid-infrared imaging. Appl Opt. 2021;60(15):C68–75.CrossRef
56.
go back to reference Moskalev I, Mirov S, Mirov M, Vasilyev S, Smolski V, Zakrevskiy A, et al. 140 W Cr:ZnSe laser system. Opt Express. 2016;24:21090–104.CrossRefADS Moskalev I, Mirov S, Mirov M, Vasilyev S, Smolski V, Zakrevskiy A, et al. 140 W Cr:ZnSe laser system. Opt Express. 2016;24:21090–104.CrossRefADS
59.
go back to reference Fjodorow P, Frolov MP, Korostelin YV, Kozlovsky VI, Schulz C, Leonov SO, et al. Room-temperature Fe:ZnSe laser tunable in the spectral range of 3.7–5.3 μm applied for intracavity absorption spectroscopy of CO2 isotopes, CO and N2O. Opt Express. 2021;29:12033–48.CrossRefADS Fjodorow P, Frolov MP, Korostelin YV, Kozlovsky VI, Schulz C, Leonov SO, et al. Room-temperature Fe:ZnSe laser tunable in the spectral range of 3.7–5.3 μm applied for intracavity absorption spectroscopy of CO2 isotopes, CO and N2O. Opt Express. 2021;29:12033–48.CrossRefADS
60.
go back to reference Wang Z, Wei Y, Li Y, Zhang TC, Wang Y, Zhao W, et al. Trace gas sensing based on min-IR CW broadly tunable Cr:ZnSe laser, ICOCN 2017. In: Proceeding of the 16th International Conference on Optical Communications and Networks, 2017, January, 1–3; 2017. https://doi.org/10.1109/ICOCN.2017.8121276 Wang Z, Wei Y, Li Y, Zhang TC, Wang Y, Zhao W, et al. Trace gas sensing based on min-IR CW broadly tunable Cr:ZnSe laser, ICOCN 2017. In: Proceeding of the 16th International Conference on Optical Communications and Networks, 2017, January, 1–3; 2017. https://​doi.​org/​10.​1109/​ICOCN.​2017.​8121276
61.
go back to reference Bernhardt B, Sorokin E, Jacquet P, Thon R, Becker T, Sorokina IT, et al. Mid-infrared dual-comb spectroscopy with 2.4 μ m Cr2+: ZnSe femtosecond lasers. Appl Phy B. 2010;100(1):3–8.CrossRefADS Bernhardt B, Sorokin E, Jacquet P, Thon R, Becker T, Sorokina IT, et al. Mid-infrared dual-comb spectroscopy with 2.4 μ m Cr2+: ZnSe femtosecond lasers. Appl Phy B. 2010;100(1):3–8.CrossRefADS
62.
go back to reference Voronina YV, Ponomarev YN, Balabanov SS. Cr2+:ZnSe laser for mid-IR remote sensing of atmospheric gases. In: Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 96803F; 2015. Voronina YV, Ponomarev YN, Balabanov SS. Cr2+:ZnSe laser for mid-IR remote sensing of atmospheric gases. In: Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 96803F; 2015.
63.
go back to reference Frolov MP, Korostelin FY, Kozlovsky VI, Leonov SO, Fjodorow P, Skasyrsky YK. Recent progress in single-crystal Fe:CdTe lasers. In: Proc. SPIE 11777, High Power Lasers and Applications, 117770H; 2021. Frolov MP, Korostelin FY, Kozlovsky VI, Leonov SO, Fjodorow P, Skasyrsky YK. Recent progress in single-crystal Fe:CdTe lasers. In: Proc. SPIE 11777, High Power Lasers and Applications, 117770H; 2021.
Metadata
Title
Spectroscopic Gas Sensing Systems
Authors
Zhenhui Du
Jinyi Li
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_13

Premium Partners