Skip to main content
Top

2023 | OriginalPaper | Chapter

14. Luminescence and Fluorescence Ion Sensing

Authors : Faheem Amin, Yasir Iqbal, Ghenadii Korotcenkov

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Heavy metal ions including Cu2+, Zn2+, Pb2+, Hg2+ and Ag2+ are vital minerals that are required for the proper functioning of various systems in living organisms. However, an excess amount of these ions may result in severe health problems and malfunctioning of different processes. Furthermore, the presence of these heavy metal ions in underground water also poses environmental threats. Ultra-sensitive detection of these heavy metal ions is therefore, quite important. Semiconductor quantum dots (QDs), especially II–VI QDs can play a very important role in the optical detection of these ions. Moreover, the surface of QDs can be engineered with specific molecules for selective and sensitive detection of a particular heavy metal ion in the presence of other ions. Below we discuss the luminescence and fluorescence detection methods of some important heavy metals including copper, mercury and lead in solution and the ion sensing ability of II–VI QDs. Mechanisms of operation of ion sensors based on QDs, features and advantaged of ratiometric ion sensors for detecting metal ions are also considered in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abolhasani J, Hassanzadeh J, Jalali ES. Ultrasensitive determination of lead and chromium contamination in well and dam water based on fluorescence quenching of CdS quantum dots. Int Nano Lett. 2014;4:65–72.CrossRef Abolhasani J, Hassanzadeh J, Jalali ES. Ultrasensitive determination of lead and chromium contamination in well and dam water based on fluorescence quenching of CdS quantum dots. Int Nano Lett. 2014;4:65–72.CrossRef
2.
go back to reference Acha ND, Elosúa C, Corres JM, Arregui FJ. Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors. 2019;19:599.CrossRef Acha ND, Elosúa C, Corres JM, Arregui FJ. Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors. 2019;19:599.CrossRef
3.
go back to reference Ahmed KBA, Pichikannu A, Veerappan A. Fluorescence cadmium sulfide nanosensor for selective recognition of chromium ions in aqueous solution at wide pH range. Sens Actuators B Chem. 2015;221:1055–61. Ahmed KBA, Pichikannu A, Veerappan A. Fluorescence cadmium sulfide nanosensor for selective recognition of chromium ions in aqueous solution at wide pH range. Sens Actuators B Chem. 2015;221:1055–61.
4.
go back to reference Ali EM, Zheng Y, Yu H, Ying JY. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem. 2007;79(24):9452–8.CrossRef Ali EM, Zheng Y, Yu H, Ying JY. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem. 2007;79(24):9452–8.CrossRef
5.
go back to reference Annalakshmi M, Kumaravel S, Chen SM, Balasubramanian P, Balamurugan TST. A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens Actuators B Chem. 2020;305:127387. Annalakshmi M, Kumaravel S, Chen SM, Balasubramanian P, Balamurugan TST. A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens Actuators B Chem. 2020;305:127387.
6.
go back to reference Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6(4):1–32.CrossRef Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6(4):1–32.CrossRef
7.
go back to reference Bach LG, Nguyen TD, Thuong NT, Van HTT, Lim KT. Glutathione capped CdSe quantum dots: synthesis, characterization, morphology, and application as a sensor for toxic metal ions. J Nanosci Nanotechnol. 2019;19(2):1192–5.CrossRef Bach LG, Nguyen TD, Thuong NT, Van HTT, Lim KT. Glutathione capped CdSe quantum dots: synthesis, characterization, morphology, and application as a sensor for toxic metal ions. J Nanosci Nanotechnol. 2019;19(2):1192–5.CrossRef
8.
go back to reference Bánfalvi G. Heavy metals, trace elements and their cellular effects. In: Bánfalvi G, editor. Cellular effects of heavy metals. New York: Springer; 2011. p. 3–28.CrossRef Bánfalvi G. Heavy metals, trace elements and their cellular effects. In: Bánfalvi G, editor. Cellular effects of heavy metals. New York: Springer; 2011. p. 3–28.CrossRef
9.
go back to reference Belcastro M, Marino T, Russo N, Toscano M. Interaction of cysteine with Cu2+ and group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study. J Mass Spectrom. 2005;40(3):300–6.CrossRef Belcastro M, Marino T, Russo N, Toscano M. Interaction of cysteine with Cu2+ and group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study. J Mass Spectrom. 2005;40(3):300–6.CrossRef
10.
go back to reference Biranje A, Azmi N, Tiwari A, Chaskar A. Quantum dots based fluorescent probe for the selective detection of heavy metal ions. J Fluoresc. 2021;31:1241–50.CrossRef Biranje A, Azmi N, Tiwari A, Chaskar A. Quantum dots based fluorescent probe for the selective detection of heavy metal ions. J Fluoresc. 2021;31:1241–50.CrossRef
11.
go back to reference Bo C, Ping Z. A new determining method of copper(II) ions at ng-mL−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem. 2005;381:986–92.CrossRef Bo C, Ping Z. A new determining method of copper(II) ions at ng-mL−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem. 2005;381:986–92.CrossRef
12.
go back to reference Brahim NB, Mohamed NBH, Echabaane M, Haouari M, Chaabane RB, Negrerie M, H.B. Ouada H.B. Thioglycerol-functionalized CdSe quantum dots detecting cadmium ions. Sens Actuators B Chem. 2015;220:1346–53. Brahim NB, Mohamed NBH, Echabaane M, Haouari M, Chaabane RB, Negrerie M, H.B. Ouada H.B. Thioglycerol-functionalized CdSe quantum dots detecting cadmium ions. Sens Actuators B Chem. 2015;220:1346–53.
13.
go back to reference Cai ZX, Yang H, Zhang Y, Yan XP. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta. 2005;559(2):234–9.CrossRef Cai ZX, Yang H, Zhang Y, Yan XP. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta. 2005;559(2):234–9.CrossRef
14.
go back to reference Cao Z, Gu Z, Zeng JL, Liu JH, Deng Q, Fan JB, Xiang JN. A novel fluorescent probe for copper ions based on polymer-modified CdSe/CdS core/shell quantum dots. Anal Sci. 2011;27:643–7.CrossRef Cao Z, Gu Z, Zeng JL, Liu JH, Deng Q, Fan JB, Xiang JN. A novel fluorescent probe for copper ions based on polymer-modified CdSe/CdS core/shell quantum dots. Anal Sci. 2011;27:643–7.CrossRef
15.
go back to reference Cao Q-E, Wang K, Hu Z, Xu Q. Syntheses of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper(II). Talanta. 1998;47:921–7.CrossRef Cao Q-E, Wang K, Hu Z, Xu Q. Syntheses of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper(II). Talanta. 1998;47:921–7.CrossRef
16.
go back to reference Chan YH, Wu C, Ye F, Jin Y, Smith PB, Chiu DT. Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Anal Chem. 2011;83:1448–55.CrossRef Chan YH, Wu C, Ye F, Jin Y, Smith PB, Chiu DT. Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Anal Chem. 2011;83:1448–55.CrossRef
17.
go back to reference Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ. A portable RGB sensing gadget for sensitive detection of Hg2+, using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron. 2017;98:36–40.CrossRef Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ. A portable RGB sensing gadget for sensitive detection of Hg2+, using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron. 2017;98:36–40.CrossRef
18.
go back to reference Chen GF, Tsai HP, Lai PS, Liao MY. Functionalized Mn2+-doped zinc sulfide quantum dots as a metal ion sensor for industrial wastes. Sens Mater. 2013;25:437–42. Chen GF, Tsai HP, Lai PS, Liao MY. Functionalized Mn2+-doped zinc sulfide quantum dots as a metal ion sensor for industrial wastes. Sens Mater. 2013;25:437–42.
19.
go back to reference Chen G, Jin Y, Wang L, Deng J, Zhang C. Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chem Commun. 2011;47:12500–2.CrossRef Chen G, Jin Y, Wang L, Deng J, Zhang C. Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chem Commun. 2011;47:12500–2.CrossRef
20.
go back to reference Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 2002;74:5132–8.CrossRef Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 2002;74:5132–8.CrossRef
21.
go back to reference Chern M, Kays JC, Bhuckory S, Dennis AM. Sensing with photoluminescent semiconductor quantum dots. Methods Appl Fluoresc. 2019;7:012005.CrossRef Chern M, Kays JC, Bhuckory S, Dennis AM. Sensing with photoluminescent semiconductor quantum dots. Methods Appl Fluoresc. 2019;7:012005.CrossRef
22.
go back to reference Chou KF, Dennis AM. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors. 2015;15:13288–325.CrossRef Chou KF, Dennis AM. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors. 2015;15:13288–325.CrossRef
23.
go back to reference Chu H, Yao D, Chen J, Yu M, Su L. Double-emission ratiometric fluorescent sensors composed of rare-earth-doped ZnS quantum dots for Hg2+ detection. ACS Omega. 2020;5:9558–65.CrossRef Chu H, Yao D, Chen J, Yu M, Su L. Double-emission ratiometric fluorescent sensors composed of rare-earth-doped ZnS quantum dots for Hg2+ detection. ACS Omega. 2020;5:9558–65.CrossRef
24.
go back to reference Clark HA, Barker SLR, Brasuel M, Miller MT, Monson E, Parus S, et al. Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators B Chem. 1998;51:12–6. Clark HA, Barker SLR, Brasuel M, Miller MT, Monson E, Parus S, et al. Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators B Chem. 1998;51:12–6.
25.
go back to reference De Acha N, Elosúa C, Corres JM, Arregui FJ. Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors. 2019;19:599.CrossRef De Acha N, Elosúa C, Corres JM, Arregui FJ. Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors. 2019;19:599.CrossRef
26.
go back to reference De Souza GC, de Santana ÉE, da Silva PA, Freitas DV, Navarro M, Paim APS, Lavorante AF. Employment of electrochemically synthesized TGA–CdSe quantum dots for Cr3+ determination in vitamin supplements. Talanta. 2015;144:986–91.CrossRef De Souza GC, de Santana ÉE, da Silva PA, Freitas DV, Navarro M, Paim APS, Lavorante AF. Employment of electrochemically synthesized TGA–CdSe quantum dots for Cr3+ determination in vitamin supplements. Talanta. 2015;144:986–91.CrossRef
27.
go back to reference Ding L, Xu B, Li T, Huang J, Bai W. A “turn-on” fluorescence copper biosensor based on DNA cleavage-dependent graphene oxide-dsDNA-CdTe quantum dots complex. Sensors. 2018;18:2605.CrossRef Ding L, Xu B, Li T, Huang J, Bai W. A “turn-on” fluorescence copper biosensor based on DNA cleavage-dependent graphene oxide-dsDNA-CdTe quantum dots complex. Sensors. 2018;18:2605.CrossRef
28.
go back to reference Ding X, Qu L, Yang R, Zhou Y, Li J. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence. 2015;30:465–71.CrossRef Ding X, Qu L, Yang R, Zhou Y, Li J. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence. 2015;30:465–71.CrossRef
29.
go back to reference Dodani SC, He Q, Chang CJ. A turn-on fluorescent sensor for detecting nickel in living cells. J Am Chem Soc. 2009;131:18020–1.CrossRef Dodani SC, He Q, Chang CJ. A turn-on fluorescent sensor for detecting nickel in living cells. J Am Chem Soc. 2009;131:18020–1.CrossRef
30.
go back to reference Doose S, Neuweiler H, Sauer M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem. 2009;10:1389–98.CrossRef Doose S, Neuweiler H, Sauer M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem. 2009;10:1389–98.CrossRef
31.
go back to reference Du W, Liao L, Yang L, Qin A, Liang A. Aqueous synthesis of functionalized copper sulfide quantum dots as near-infrared luminescent probes for detection of Hg2+, Ag+ and Au3+. Sci Rep. 2017;7:11451–62.CrossRef Du W, Liao L, Yang L, Qin A, Liang A. Aqueous synthesis of functionalized copper sulfide quantum dots as near-infrared luminescent probes for detection of Hg2+, Ag+ and Au3+. Sci Rep. 2017;7:11451–62.CrossRef
32.
go back to reference Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR. A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polymer Sci. 2018;296:1581–90.CrossRef Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR. A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polymer Sci. 2018;296:1581–90.CrossRef
33.
go back to reference Fan Y, Cai Y, Liu H, et al. CdS quantum dots capped with hyperbranched graft copolymers: role of hyperbranched shell in fluorescence and selective mercury-sensing. Sens Actuators B Chem. 2017;251:171–9. Fan Y, Cai Y, Liu H, et al. CdS quantum dots capped with hyperbranched graft copolymers: role of hyperbranched shell in fluorescence and selective mercury-sensing. Sens Actuators B Chem. 2017;251:171–9.
34.
go back to reference Fernández-Argüelles MT, Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal Chim Acta. 2005;549:20–5.CrossRef Fernández-Argüelles MT, Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal Chim Acta. 2005;549:20–5.CrossRef
35.
go back to reference Fu D, Yuan D. Spectrophotometric determination of trace copper in water samples with thiomichlersketone. Spectrochim Acta A. 2007;66:434–7.CrossRef Fu D, Yuan D. Spectrophotometric determination of trace copper in water samples with thiomichlersketone. Spectrochim Acta A. 2007;66:434–7.CrossRef
36.
go back to reference Gao J, Fei X, Li G, Jiang Y, Li S. The effects of QD stabilizer structures on pH dependence, fluorescence characteristics, and QD sizes. J Phys D Appl Phys. 2018;51:285101.CrossRef Gao J, Fei X, Li G, Jiang Y, Li S. The effects of QD stabilizer structures on pH dependence, fluorescence characteristics, and QD sizes. J Phys D Appl Phys. 2018;51:285101.CrossRef
37.
go back to reference Gao M, Kirstein S, Mohwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H. Strongly photo luminescent CdTe nanocrystals by proper surface modification. J Phys Chem B. 1998;102:8360–3.CrossRef Gao M, Kirstein S, Mohwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H. Strongly photo luminescent CdTe nanocrystals by proper surface modification. J Phys Chem B. 1998;102:8360–3.CrossRef
38.
go back to reference Ibrahim I, Lim HN, Huang NM, Pandikumar A. Cadmium Sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper(II) ions. PLoS One. 2016;11(5):e0154557.CrossRef Ibrahim I, Lim HN, Huang NM, Pandikumar A. Cadmium Sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper(II) ions. PLoS One. 2016;11(5):e0154557.CrossRef
39.
go back to reference Iyer G, Pinaud F, Xu J, Ebenstein Y, Li J, Chang J, et al. Aromatic aldehyde and hydrazine activated peptide coated quantum dots for easy bioconjugation and live cell imaging. Bioconjug Chem. 2011;22:1006–11.CrossRef Iyer G, Pinaud F, Xu J, Ebenstein Y, Li J, Chang J, et al. Aromatic aldehyde and hydrazine activated peptide coated quantum dots for easy bioconjugation and live cell imaging. Bioconjug Chem. 2011;22:1006–11.CrossRef
40.
go back to reference Isarov AV, Chrysochoos J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with Copper(II) ions. Langmuir. 1997;13:3142–9.CrossRef Isarov AV, Chrysochoos J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with Copper(II) ions. Langmuir. 1997;13:3142–9.CrossRef
41.
go back to reference Han J, Bu X, Zhou D, Zhang H, Yang B. Discriminating Cr(III) and Cr(VI) using aqueous CdTe quantum dots with various surface ligands. RSC Adv. 2014;4:32946–52.CrossRef Han J, Bu X, Zhou D, Zhang H, Yang B. Discriminating Cr(III) and Cr(VI) using aqueous CdTe quantum dots with various surface ligands. RSC Adv. 2014;4:32946–52.CrossRef
42.
go back to reference Han J, Burgess K. Fluorescent indicators for intracellular pH. Chem Rev. 2010;110(2010):2709–28.CrossRef Han J, Burgess K. Fluorescent indicators for intracellular pH. Chem Rev. 2010;110(2010):2709–28.CrossRef
43.
go back to reference Han B, Yuan J, Wang E. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Anal Chem. 2009;81:5569–73.CrossRef Han B, Yuan J, Wang E. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Anal Chem. 2009;81:5569–73.CrossRef
44.
go back to reference Harimech PK, Hartmann R, Rejman J, del Pino P, Rivera-Gil P, Parak WJ. Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. J Mater Chem B. 2015;3:2801–7.CrossRef Harimech PK, Hartmann R, Rejman J, del Pino P, Rivera-Gil P, Parak WJ. Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. J Mater Chem B. 2015;3:2801–7.CrossRef
45.
go back to reference Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, et al. Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev. 2017;117(2):537–711.CrossRef Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, et al. Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev. 2017;117(2):537–711.CrossRef
46.
go back to reference Hildebrandt N, Medintz I. FRET – Förster resonance energy transfer. Weinheim: WileyVCH Verlag GmbH and Co. KGaA; 2013. Hildebrandt N, Medintz I. FRET – Förster resonance energy transfer. Weinheim: WileyVCH Verlag GmbH and Co. KGaA; 2013.
47.
go back to reference Huang CP, Li YL, Chen TM. A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens Bioelectron. 2007;22:1835–8.CrossRef Huang CP, Li YL, Chen TM. A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens Bioelectron. 2007;22:1835–8.CrossRef
48.
go back to reference Jacob JM, Rajan R, Kurup GG. Biologically synthesized ZnS quantum dots as fluorescent probes for lead (II) sensing. Luminescence. 2020;35(8):1328–37.CrossRef Jacob JM, Rajan R, Kurup GG. Biologically synthesized ZnS quantum dots as fluorescent probes for lead (II) sensing. Luminescence. 2020;35(8):1328–37.CrossRef
49.
go back to reference Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72.CrossRef Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72.CrossRef
50.
go back to reference Jiwan S, Ajay K. Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ. 2011;1:15–21. Jiwan S, Ajay K. Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ. 2011;1:15–21.
51.
go back to reference Kaiser U, Jimenez de Aberasturi D, Malinowski R, Amin F, Parak WJ, Heimbrodt W. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Appl Phys Lett. 2014;104:041901.CrossRef Kaiser U, Jimenez de Aberasturi D, Malinowski R, Amin F, Parak WJ, Heimbrodt W. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Appl Phys Lett. 2014;104:041901.CrossRef
52.
go back to reference Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev. 1993;93:267–300.CrossRef Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev. 1993;93:267–300.CrossRef
53.
go back to reference Kaviya S, Kabila S, Jayasree KV. Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions. Mater Res Bull. 2017;95:163–8.CrossRef Kaviya S, Kabila S, Jayasree KV. Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions. Mater Res Bull. 2017;95:163–8.CrossRef
54.
go back to reference Kessler MA. Determination of copper at ng-mL−1-levels based on quenching of the europium chelate luminescence. Anal Chim Acta. 1998;364:125.CrossRef Kessler MA. Determination of copper at ng-mL−1-levels based on quenching of the europium chelate luminescence. Anal Chim Acta. 1998;364:125.CrossRef
55.
go back to reference Kini S, Ganiga V, Kulkarni SD, Chidangil S, George SD. Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G. J Nanopart Res. 2018;20:232–44.CrossRef Kini S, Ganiga V, Kulkarni SD, Chidangil S, George SD. Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G. J Nanopart Res. 2018;20:232–44.CrossRef
56.
go back to reference Kubo Y, Yamamoto M, Ikeda M, Takeuchi M, Shinkai S, Yamaguchi S, Tamao K. A colorimetric and ratiometric fluorescent chemosensor with three emission changes: fluoride ion sensing by a Triarylborane– porphyrin conjugate. Angew Chem. 2003;42(2003):2036.CrossRef Kubo Y, Yamamoto M, Ikeda M, Takeuchi M, Shinkai S, Yamaguchi S, Tamao K. A colorimetric and ratiometric fluorescent chemosensor with three emission changes: fluoride ion sensing by a Triarylborane– porphyrin conjugate. Angew Chem. 2003;42(2003):2036.CrossRef
57.
go back to reference Kumar P, Kim K-H, Bansal V, Lazarides T, Kumar N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng Chem. 2017;54:30–43.CrossRef Kumar P, Kim K-H, Bansal V, Lazarides T, Kumar N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng Chem. 2017;54:30–43.CrossRef
58.
go back to reference Labeb M, Sakr A-H, Soliman M, Abdel-Fettah TM, Ebrahim S. Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Opt Mater. 2018;79:331–5.CrossRef Labeb M, Sakr A-H, Soliman M, Abdel-Fettah TM, Ebrahim S. Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Opt Mater. 2018;79:331–5.CrossRef
59.
go back to reference Lai SJ, Chang XJ, Fu C. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta. 2009;165:39–44.CrossRef Lai SJ, Chang XJ, Fu C. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta. 2009;165:39–44.CrossRef
60.
go back to reference Lai S, Mao XCJ, Zhai Y, Lian N, Zheng H. Determination of silver ion with cadmium sulfide quantum dots modified by bismuthiol II as fluorescence probe. Ann Chim. 2007;97(1–2):109–21.CrossRef Lai S, Mao XCJ, Zhai Y, Lian N, Zheng H. Determination of silver ion with cadmium sulfide quantum dots modified by bismuthiol II as fluorescence probe. Ann Chim. 2007;97(1–2):109–21.CrossRef
61.
go back to reference Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nano. 2019;9:192. Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nano. 2019;9:192.
62.
go back to reference Li YJ, Huang TT, Liu J, Xie YQ, Shi B, Zhang YM, et al. Detection of Lead(II) in living cells by inducing the transformation of a supramolecular system into quantum dots. ACS Sustain Chem Eng. 2022;10(24):7907–15.CrossRef Li YJ, Huang TT, Liu J, Xie YQ, Shi B, Zhang YM, et al. Detection of Lead(II) in living cells by inducing the transformation of a supramolecular system into quantum dots. ACS Sustain Chem Eng. 2022;10(24):7907–15.CrossRef
63.
go back to reference Li M, Zhou X, Guo S, Wu N. Detection of lead(II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron. 2013;43:69–74.CrossRef Li M, Zhou X, Guo S, Wu N. Detection of lead(II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron. 2013;43:69–74.CrossRef
64.
go back to reference Liu X, Yang Y, Li Q, Wang Z, Xing X, Wang Y. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sens Actuators B Chem. 2018;260:1068–75. Liu X, Yang Y, Li Q, Wang Z, Xing X, Wang Y. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sens Actuators B Chem. 2018;260:1068–75.
65.
go back to reference Liu Z, Liu S, Yin P, He Y. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion. Anal Chim Acta. 2012;745:78–84. Liu Z, Liu S, Yin P, He Y. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion. Anal Chim Acta. 2012;745:78–84.
66.
go back to reference Liu B, Zeng F, Wu G, Wu S. Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors. Analyst. 2012;137:3717. Liu B, Zeng F, Wu G, Wu S. Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors. Analyst. 2012;137:3717.
67.
go back to reference Liu H, Zhang X, Wu X, Jiang L, Burda C, Zhu J. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu(II) sensing. Chem Commun. 2011;47:4237–9.CrossRef Liu H, Zhang X, Wu X, Jiang L, Burda C, Zhu J. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu(II) sensing. Chem Commun. 2011;47:4237–9.CrossRef
68.
go back to reference Liu YS, Sun Y, Vernier PT, Liang CH, Chong SYC, Gundersen MA. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C. 2007;111:2872–8.CrossRef Liu YS, Sun Y, Vernier PT, Liang CH, Chong SYC, Gundersen MA. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C. 2007;111:2872–8.CrossRef
70.
go back to reference Luo XB, Guo B, Wang LC, Deng F, Qi RX, Luo SL, Au CT. Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water. Colloids Surf A Physicochem Eng Asp. 2014;462:186–93.CrossRef Luo XB, Guo B, Wang LC, Deng F, Qi RX, Luo SL, Au CT. Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water. Colloids Surf A Physicochem Eng Asp. 2014;462:186–93.CrossRef
71.
go back to reference Maghsoudi AS, Hassani S, Mirnia K, Abdollahi M. Recent advances in nanotechnology-based biosensors development for detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine. 2021;16:803–32.CrossRef Maghsoudi AS, Hassani S, Mirnia K, Abdollahi M. Recent advances in nanotechnology-based biosensors development for detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine. 2021;16:803–32.CrossRef
72.
go back to reference Men C, Liu R, Xu F, Wang Q, Guo L, Shen Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci Total Environ. 2018;612:138–47.CrossRef Men C, Liu R, Xu F, Wang Q, Guo L, Shen Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci Total Environ. 2018;612:138–47.CrossRef
73.
go back to reference Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda SJ, Kudo M, et al. MercuryII-mediated formation of Thymine−HgII−Thymine base pairs in DNA duplexes. J Am Chem Soc. 2006;128(2006):2172–3.CrossRef Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda SJ, Kudo M, et al. MercuryII-mediated formation of Thymine−HgII−Thymine base pairs in DNA duplexes. J Am Chem Soc. 2006;128(2006):2172–3.CrossRef
74.
go back to reference Mori I, Fujimoto T, Fujita Y, Matsuo T. Selective and sensitive spectrophotometric determination of copper(II) and benzoylperoxide with N-ethyl-2-naphthylamine. Talanta. 1995;42:77–81.CrossRef Mori I, Fujimoto T, Fujita Y, Matsuo T. Selective and sensitive spectrophotometric determination of copper(II) and benzoylperoxide with N-ethyl-2-naphthylamine. Talanta. 1995;42:77–81.CrossRef
75.
go back to reference Mu Q, Li Y, Xu H, Ma Y, Zhu W, Zhong X. Quantum dots-based ratiometric fluorescence probe for mercuric ions in biological fluids. Talanta. 2014;119:564–71.CrossRef Mu Q, Li Y, Xu H, Ma Y, Zhu W, Zhong X. Quantum dots-based ratiometric fluorescence probe for mercuric ions in biological fluids. Talanta. 2014;119:564–71.CrossRef
76.
go back to reference Niebling T, Zhang F, Ali Z, Parak WJ, Heimbrodt W. Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: the role of reabsorption. J Appl Phys. 2009;106:104701.CrossRef Niebling T, Zhang F, Ali Z, Parak WJ, Heimbrodt W. Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: the role of reabsorption. J Appl Phys. 2009;106:104701.CrossRef
77.
go back to reference Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.CrossRef Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.CrossRef
78.
go back to reference Ono A, Togashi H. Highly selective oligonucleotide-based sensor for Mercury(II) in aqueous solutions. Angew Chem Int Ed Engl. 2004;43(33):4300–2.CrossRef Ono A, Togashi H. Highly selective oligonucleotide-based sensor for Mercury(II) in aqueous solutions. Angew Chem Int Ed Engl. 2004;43(33):4300–2.CrossRef
79.
go back to reference Paim APS, Rodrigues SSM, et al. Fluorescence probe for mercury(II) based on the aqueous synthesis of CdTe quantum dots stabilized with 2-mercaptoetanosulfonate. New J Chem. 2017;41:3265–72.CrossRef Paim APS, Rodrigues SSM, et al. Fluorescence probe for mercury(II) based on the aqueous synthesis of CdTe quantum dots stabilized with 2-mercaptoetanosulfonate. New J Chem. 2017;41:3265–72.CrossRef
80.
go back to reference Paramanik B, Bhattacharyya S, Patra A. Detection of Hg2+ and F− ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QDs nanocomposite. Chem Eur J. 2013;19:5980–7.CrossRef Paramanik B, Bhattacharyya S, Patra A. Detection of Hg2+ and F ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QDs nanocomposite. Chem Eur J. 2013;19:5980–7.CrossRef
81.
go back to reference Parani S, Oluwafemi OS. Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology. 2020;31(39):395501.CrossRef Parani S, Oluwafemi OS. Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology. 2020;31(39):395501.CrossRef
82.
go back to reference Pendyala NB, Koteswara Rao KSR. Efficient Hg and Ag ion detection with luminescent PbS quantum dots grown in poly vinyl alcohol and capped with mercaptoethanol. Colloids Surf. 2009;339:43–7.CrossRef Pendyala NB, Koteswara Rao KSR. Efficient Hg and Ag ion detection with luminescent PbS quantum dots grown in poly vinyl alcohol and capped with mercaptoethanol. Colloids Surf. 2009;339:43–7.CrossRef
83.
go back to reference Peng CF, Zhang YY, Qian ZJ, Xie ZJ. Fluorescence sensor based on glutathione capped CdTe QDs for detection of Cr3+ ions in vitamins. Food Sci Human Wellness. 2018;7:71–6.CrossRef Peng CF, Zhang YY, Qian ZJ, Xie ZJ. Fluorescence sensor based on glutathione capped CdTe QDs for detection of Cr3+ ions in vitamins. Food Sci Human Wellness. 2018;7:71–6.CrossRef
84.
go back to reference Pei J, Zhu H, Wang X, Zhang H, Yang X. Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection. Anal Chim Acta 2012;757:63–8. Pei J, Zhu H, Wang X, Zhang H, Yang X. Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection. Anal Chim Acta 2012;757:63–8.
85.
go back to reference Pinto JJ, Moreno C, García-Vargas M. A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Anal Bioanal Chem. 2002;373:844–8.CrossRef Pinto JJ, Moreno C, García-Vargas M. A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Anal Bioanal Chem. 2002;373:844–8.CrossRef
86.
go back to reference Pooja CP. Functionalized CdTe fluorescence nanosensor for the sensitive detection of water borne environmentally hazardous metal ions. Opt Mater. 2021;111:110584.CrossRef Pooja CP. Functionalized CdTe fluorescence nanosensor for the sensitive detection of water borne environmentally hazardous metal ions. Opt Mater. 2021;111:110584.CrossRef
87.
go back to reference Qin J, Dong B, Gao R, Su G, Han J, Li X, et al. Water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensors for the detection of ultra-trace copper(II) ions in seawater. Anal Methods. 2017;9:322–8.CrossRef Qin J, Dong B, Gao R, Su G, Han J, Li X, et al. Water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensors for the detection of ultra-trace copper(II) ions in seawater. Anal Methods. 2017;9:322–8.CrossRef
88.
go back to reference Qu H, Cao L, Su G, Liu W, Gao R, Xia C, Qin J. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J Nanopart Res. 2014;16:2762.CrossRef Qu H, Cao L, Su G, Liu W, Gao R, Xia C, Qin J. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J Nanopart Res. 2014;16:2762.CrossRef
89.
go back to reference Rana M, Chowdhury P. L-glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions. J Lumin. 2019;206(2019):105–12.CrossRef Rana M, Chowdhury P. L-glutathione capped CdSeS/ZnS quantum dot sensor for the detection of environmentally hazardous metal ions. J Lumin. 2019;206(2019):105–12.CrossRef
90.
go back to reference Reiss P, Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002;2:781–4.CrossRef Reiss P, Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002;2:781–4.CrossRef
91.
go back to reference Ren J, Chen HL, Ren CL, Sun JF, Liu Q, Wang M, Chen XG. L-cysteine capped CdSe as sensitive sensor for detection of trace lead ion in aqueous solution. Mater Res Innov. 2010;14(2):133–7.CrossRef Ren J, Chen HL, Ren CL, Sun JF, Liu Q, Wang M, Chen XG. L-cysteine capped CdSe as sensitive sensor for detection of trace lead ion in aqueous solution. Mater Res Innov. 2010;14(2):133–7.CrossRef
92.
go back to reference Ribeiro DSM, Castro RC, Pascoa RNMJ, Soares JX, Rodrigues SSM, Santos JLM. Tuning CdTe quantum dots reactivity for multipoint detection of mercury(II), silver(I) and copper(II). J Lumin. 2019;207:386–96.CrossRef Ribeiro DSM, Castro RC, Pascoa RNMJ, Soares JX, Rodrigues SSM, Santos JLM. Tuning CdTe quantum dots reactivity for multipoint detection of mercury(II), silver(I) and copper(II). J Lumin. 2019;207:386–96.CrossRef
93.
go back to reference Saha J, Datta RA, Dey D, Bhattacharjee D, Hussain SA. Role of quantum dot in designing FRET based sensors. Mater Today: Proc. 2018;5:2306–13. Saha J, Datta RA, Dey D, Bhattacharjee D, Hussain SA. Role of quantum dot in designing FRET based sensors. Mater Today: Proc. 2018;5:2306–13.
94.
go back to reference Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem. 2006;45:4562–89.CrossRef Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem. 2006;45:4562–89.CrossRef
95.
go back to reference Schwarz K, Mertz W. Chromium(III) and glucose tolerance factor. Arch Biochem Biophys. 1959;85:292–5.CrossRef Schwarz K, Mertz W. Chromium(III) and glucose tolerance factor. Arch Biochem Biophys. 1959;85:292–5.CrossRef
96.
go back to reference Shamsipur M, Rajabi HR. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C. 2014;36:139–45.CrossRef Shamsipur M, Rajabi HR. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C. 2014;36:139–45.CrossRef
97.
go back to reference Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG. A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc. 2006;128:13320–1.CrossRef Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG. A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc. 2006;128:13320–1.CrossRef
98.
go back to reference Sun X, Liu B, Xu Y. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg2+. Analyst. 2012;137:1125–9.CrossRef Sun X, Liu B, Xu Y. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg2+. Analyst. 2012;137:1125–9.CrossRef
99.
go back to reference Sung TW, Lo YL, Chang IL. Highly sensitive and selective fluorescence probe for Cr3+ ion detection using watersoluble CdSe QDs. Sens Actuators B Chem. 2014;202:1349–56. Sung TW, Lo YL, Chang IL. Highly sensitive and selective fluorescence probe for Cr3+ ion detection using watersoluble CdSe QDs. Sens Actuators B Chem. 2014;202:1349–56.
100.
go back to reference Sung TW, Lo YL. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens Actuators B Chem. 2012;165:119–25. Sung TW, Lo YL. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens Actuators B Chem. 2012;165:119–25.
101.
go back to reference Susha AS, Javier AM, Parak WJ, Rogach AL. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions. Colloids Surf A Physicochem Eng Asp. 2006;281:40–3.CrossRef Susha AS, Javier AM, Parak WJ, Rogach AL. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions. Colloids Surf A Physicochem Eng Asp. 2006;281:40–3.CrossRef
102.
go back to reference Tang G, Wang J, Lia Y, Su X. Determination of arsenic(iii) based on the fluorescence resonance energy transfer between CdTe QDs and rhodamine 6G. RSC Adv. 2015;5(2015):17519–25.CrossRef Tang G, Wang J, Lia Y, Su X. Determination of arsenic(iii) based on the fluorescence resonance energy transfer between CdTe QDs and rhodamine 6G. RSC Adv. 2015;5(2015):17519–25.CrossRef
103.
go back to reference Terra IAA, Mercante LA, Andre RS, Correa DS. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors. 2017;7:61.CrossRef Terra IAA, Mercante LA, Andre RS, Correa DS. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors. 2017;7:61.CrossRef
104.
go back to reference Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM. pH-sensitive ligand for luminescent quantum dots. Langmuir. 2006;22:10284–90.CrossRef Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM. pH-sensitive ligand for luminescent quantum dots. Langmuir. 2006;22:10284–90.CrossRef
105.
go back to reference Vaishanav SK, Korram J, Pradhan P, Chandraker K, Nagwanshi R, Ghosh KK, et al. Green luminescent CdTe quantum dot based fluorescence nano-sensor for sensitive detection of arsenic (III). J Fluoresc. 2017;27(3):781–9.CrossRef Vaishanav SK, Korram J, Pradhan P, Chandraker K, Nagwanshi R, Ghosh KK, et al. Green luminescent CdTe quantum dot based fluorescence nano-sensor for sensitive detection of arsenic (III). J Fluoresc. 2017;27(3):781–9.CrossRef
106.
go back to reference Vázquez-Gonzáleza M, Carrillo-Carrion C. Analytical strategies based on quantum dots for heavy metal ions detection. J Biomed Opt. 2014;19(10):101503.CrossRef Vázquez-Gonzáleza M, Carrillo-Carrion C. Analytical strategies based on quantum dots for heavy metal ions detection. J Biomed Opt. 2014;19(10):101503.CrossRef
107.
go back to reference Vincent JB. Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev. 2000;58(3):67–72.CrossRef Vincent JB. Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev. 2000;58(3):67–72.CrossRef
108.
go back to reference Uddandarao P, Balakrishnan RJ, Ashok A, Swarup S, Sinha P. Bioinspired ZnS:Gd nanoparticles synthesized from an Endophytic Fungi Aspergillus flavus for fluorescence-based metal detection. Biomimetics. 2019;4:11–20.CrossRef Uddandarao P, Balakrishnan RJ, Ashok A, Swarup S, Sinha P. Bioinspired ZnS:Gd nanoparticles synthesized from an Endophytic Fungi Aspergillus flavus for fluorescence-based metal detection. Biomimetics. 2019;4:11–20.CrossRef
109.
go back to reference Wada O, Wu GY, Yamamoto A, Manabe S, Ono T. Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environ Res. 1983;32:228–39.CrossRef Wada O, Wu GY, Yamamoto A, Manabe S, Ono T. Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environ Res. 1983;32:228–39.CrossRef
110.
go back to reference Wang W, Liu T, Yi D. Detection of mercury ion based on quantum dots using miniaturised optical fibre sensor. J Eng. 2019;23:8595–8.CrossRef Wang W, Liu T, Yi D. Detection of mercury ion based on quantum dots using miniaturised optical fibre sensor. J Eng. 2019;23:8595–8.CrossRef
111.
go back to reference Wang X, Hao J, Cheng J, Li J, Miao J, Li R, et al. Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. Nanoscale. 2019;11(19):9327–34.CrossRef Wang X, Hao J, Cheng J, Li J, Miao J, Li R, et al. Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. Nanoscale. 2019;11(19):9327–34.CrossRef
112.
go back to reference Wang Z, Xiao X, Zou T, Yang Y, Xing X, Zhao R, et al. Citric acid capped CdS quantum dots for fluorescence detection of copper ions (II) in aqueous solution. Nano. 2018;9:32. Wang Z, Xiao X, Zou T, Yang Y, Xing X, Zhao R, et al. Citric acid capped CdS quantum dots for fluorescence detection of copper ions (II) in aqueous solution. Nano. 2018;9:32.
113.
go back to reference Wang J, Jiang CX, Yang F, Chen AM, Wang LG, Hu J. Controlled synthesis of a dual-emission hierarchical quantum dot hybrid nanostructure as a robust ratiometric fluorescent sensor. RSC Adv. 2016;6:15716–23.CrossRef Wang J, Jiang CX, Yang F, Chen AM, Wang LG, Hu J. Controlled synthesis of a dual-emission hierarchical quantum dot hybrid nanostructure as a robust ratiometric fluorescent sensor. RSC Adv. 2016;6:15716–23.CrossRef
114.
go back to reference Wang J, Jiang C, Wang X, Wang L, Chen A, Hu J, Luo Z. Fabrication of an ‘ion-imprinting’ dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst. 2016;141:5886–92.CrossRef Wang J, Jiang C, Wang X, Wang L, Chen A, Hu J, Luo Z. Fabrication of an ‘ion-imprinting’ dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst. 2016;141:5886–92.CrossRef
115.
go back to reference Wang Q, Yu X, Zhan G, Li C. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots. Biosens Bioelectron. 2014;54:311–6.CrossRef Wang Q, Yu X, Zhan G, Li C. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots. Biosens Bioelectron. 2014;54:311–6.CrossRef
116.
go back to reference Wang J, Zhou X, Ma H, Tao G. Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection. Spectrochim Acta A. 2011;81:178–83.CrossRef Wang J, Zhou X, Ma H, Tao G. Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection. Spectrochim Acta A. 2011;81:178–83.CrossRef
117.
go back to reference Wang Y, Lu J, Tong Z, Huang H. A fluorescence quenching method for determination of copper ions with CdTe quantum dots. J Chil Chem Soc. 2009;54:274–7.CrossRef Wang Y, Lu J, Tong Z, Huang H. A fluorescence quenching method for determination of copper ions with CdTe quantum dots. J Chil Chem Soc. 2009;54:274–7.CrossRef
118.
go back to reference Wang Y, Ye C, Zhu ZH, Hu YZ. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination. Anal Chim Acta. 2008;610:50–6.CrossRef Wang Y, Ye C, Zhu ZH, Hu YZ. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination. Anal Chim Acta. 2008;610:50–6.CrossRef
119.
go back to reference Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44:4792–834.CrossRef Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44:4792–834.CrossRef
120.
go back to reference Weidenhamer JD, Clement ML. Evidence of recycling of lead battery waste into highly leaded. Chemosphere. 2007;67:961–5.CrossRef Weidenhamer JD, Clement ML. Evidence of recycling of lead battery waste into highly leaded. Chemosphere. 2007;67:961–5.CrossRef
121.
go back to reference WHO. Lead in drinking-water. World Health Organization, Geneva: Background Document for Development of WHO Guidelines for Drinking-Water Quality; 2011. WHO. Lead in drinking-water. World Health Organization, Geneva: Background Document for Development of WHO Guidelines for Drinking-Water Quality; 2011.
122.
go back to reference WHO. Copper in Drinking-Water. World Health Organization, Geneva: Background Document for Development of WHO Guidelines for Drinking-Water Quality; 2004. WHO. Copper in Drinking-Water. World Health Organization, Geneva: Background Document for Development of WHO Guidelines for Drinking-Water Quality; 2004.
123.
go back to reference WHO. Chromium in drinking-water, background document for development of WHO guidelines for drinking-water quality. Geneva: World Health Organization; 2003. WHO. Chromium in drinking-water, background document for development of WHO guidelines for drinking-water quality. Geneva: World Health Organization; 2003.
124.
go back to reference Wijayawardena MAA, Megharaj M, Naidu R. Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. J Soils Sediments. 2017;17:1064–72.CrossRef Wijayawardena MAA, Megharaj M, Naidu R. Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. J Soils Sediments. 2017;17:1064–72.CrossRef
125.
go back to reference Wu L, Guo Q-S, Liu Y-Q, Sun Q-J. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem. 2015;87(2015):5318–23.CrossRef Wu L, Guo Q-S, Liu Y-Q, Sun Q-J. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem. 2015;87(2015):5318–23.CrossRef
126.
go back to reference Wu DD, Chen Z, Huang GB, Liu XG. ZnSe quantum dots based fluorescence sensors for Cu2+ ions. Sens Actuators A Phys. 2014;205:72–8. Wu DD, Chen Z, Huang GB, Liu XG. ZnSe quantum dots based fluorescence sensors for Cu2+ ions. Sens Actuators A Phys. 2014;205:72–8.
127.
go back to reference Wu CS, Khaing Oo MK, Fan XD. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano. 2010;4:5897–904.CrossRef Wu CS, Khaing Oo MK, Fan XD. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano. 2010;4:5897–904.CrossRef
128.
go back to reference Wu HM, Liang JG, Han H. A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta. 2008;161:81–6.CrossRef Wu HM, Liang JG, Han H. A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta. 2008;161:81–6.CrossRef
129.
go back to reference Yamamoto A, Wada O, Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem. 1987;165:627–31.CrossRef Yamamoto A, Wada O, Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem. 1987;165:627–31.CrossRef
130.
go back to reference Xi LL, Ma H-B, Tao GH. Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection. Chin Chem Lett. 2016;27:1531–6.CrossRef Xi LL, Ma H-B, Tao GH. Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection. Chin Chem Lett. 2016;27:1531–6.CrossRef
131.
go back to reference Xie T, Zhong X, Liu Z, Xie C. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper(II). Microchim Acta. 2020;187:323.CrossRef Xie T, Zhong X, Liu Z, Xie C. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper(II). Microchim Acta. 2020;187:323.CrossRef
132.
go back to reference Xia Y-S, Zhu C-Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta. 2008;75:215–21. Xia Y-S, Zhu C-Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta. 2008;75:215–21.
133.
go back to reference Xie HY, Liang J, Zhang ZL, Liu Y, He ZK, Pang DW. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta A. 2004;60:2527–30.CrossRef Xie HY, Liang J, Zhang ZL, Liu Y, He ZK, Pang DW. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta A. 2004;60:2527–30.CrossRef
134.
go back to reference Xing XW, Wang DM, Chen Z, Zheng BD, Li BH, Wu DD. ZnTe quantum dots as fluorescence sensors for the detection of iron ions. J Mater Sci-Mater Electron. 2018;29:14192–9.CrossRef Xing XW, Wang DM, Chen Z, Zheng BD, Li BH, Wu DD. ZnTe quantum dots as fluorescence sensors for the detection of iron ions. J Mater Sci-Mater Electron. 2018;29:14192–9.CrossRef
135.
go back to reference Xu S, Xu S, Zhu Y, Xu W, Zhou P, Zhou C, et al. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum. Nanoscale. 2014;6:12573–9.CrossRef Xu S, Xu S, Zhu Y, Xu W, Zhou P, Zhou C, et al. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum. Nanoscale. 2014;6:12573–9.CrossRef
136.
go back to reference Zhang Y, Xiao J-Y, Zhu Y, Tian L-J, Wang W-K, Zhu T, et al. Fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal Chem. 2020;92:3990–7.CrossRef Zhang Y, Xiao J-Y, Zhu Y, Tian L-J, Wang W-K, Zhu T, et al. Fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal Chem. 2020;92:3990–7.CrossRef
137.
go back to reference Zhang L, Zhu J, Ai J, Zhou Z, Jia X, Wang E. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens Bioelectron. 2013;39:268–73.CrossRef Zhang L, Zhu J, Ai J, Zhou Z, Jia X, Wang E. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens Bioelectron. 2013;39:268–73.CrossRef
138.
go back to reference Zhang F, Lees E, Amin F, Gil PR, Yang F, Mulvaney P, Parak WJ. Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small. 2011;7(22):3113–27.CrossRef Zhang F, Lees E, Amin F, Gil PR, Yang F, Mulvaney P, Parak WJ. Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small. 2011;7(22):3113–27.CrossRef
139.
go back to reference Zhang F, Ali Z, Amin F, Riedinger A, Parak WJ. In vitro and intracellular sensing by using the photoluminescence of quantum dots. Anal Bioanal Chem. 2010;397:935–42.CrossRef Zhang F, Ali Z, Amin F, Riedinger A, Parak WJ. In vitro and intracellular sensing by using the photoluminescence of quantum dots. Anal Bioanal Chem. 2010;397:935–42.CrossRef
140.
go back to reference Zhang L, Xu C, Li B. Simple and sensitive detection method for chromium (VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta. 2009;166:61–8.CrossRef Zhang L, Xu C, Li B. Simple and sensitive detection method for chromium (VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta. 2009;166:61–8.CrossRef
141.
go back to reference Zhang Y, Zhang H, Guo X, Wang H. L-cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination. Microchem J. 2008;89:142–7.CrossRef Zhang Y, Zhang H, Guo X, Wang H. L-cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination. Microchem J. 2008;89:142–7.CrossRef
142.
go back to reference Zhao Q, Rong X, Chen L, Ma H, Tao G. Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor. Talanta. 2013;114:110–6.CrossRef Zhao Q, Rong X, Chen L, Ma H, Tao G. Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor. Talanta. 2013;114:110–6.CrossRef
143.
go back to reference Zhao Q, Rong X, Ma H, Tao G. Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion. J Hazard Mat. 2013;250-251:45–52.CrossRef Zhao Q, Rong X, Ma H, Tao G. Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion. J Hazard Mat. 2013;250-251:45–52.CrossRef
144.
go back to reference Zhao T, Hou X, Xie YN, Wu L, Wu P. Phosphorescent sensing of Cr3+ with protein-functionalized Mn-doped ZnS quantum dots. Analyst. 2013;138:6589–94.CrossRef Zhao T, Hou X, Xie YN, Wu L, Wu P. Phosphorescent sensing of Cr3+ with protein-functionalized Mn-doped ZnS quantum dots. Analyst. 2013;138:6589–94.CrossRef
145.
go back to reference Zhong W, Zhang C, Gao Q, Li H. Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots. Microchim Acta. 2012;176:101–7.CrossRef Zhong W, Zhang C, Gao Q, Li H. Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots. Microchim Acta. 2012;176:101–7.CrossRef
146.
go back to reference Zhou ZQ, Yang LY, Liao YP, Wu HY, Zhou XH, Huang S, et al. Mn:ZnSe quantum dots-based turn-on fluorescent sensor for highly selective and sensitive detection of Cd2+. Anal Methods. 2020;12:552–6.CrossRef Zhou ZQ, Yang LY, Liao YP, Wu HY, Zhou XH, Huang S, et al. Mn:ZnSe quantum dots-based turn-on fluorescent sensor for highly selective and sensitive detection of Cd2+. Anal Methods. 2020;12:552–6.CrossRef
147.
go back to reference Zhou ZQ, Yan R, Zhao J, Yang LY, Chen JL, Hu YJ, Jiang FL, Liu Y. Highly selective and sensitive detection of Hg2+ based on fluorescence enhancement of Mn-doped ZnSe QDs by Hg2+-Mn2+ replacement. Sens Actuators B Chem. 2018;254:8–15.CrossRef Zhou ZQ, Yan R, Zhao J, Yang LY, Chen JL, Hu YJ, Jiang FL, Liu Y. Highly selective and sensitive detection of Hg2+ based on fluorescence enhancement of Mn-doped ZnSe QDs by Hg2+-Mn2+ replacement. Sens Actuators B Chem. 2018;254:8–15.CrossRef
148.
go back to reference Zhou Y, Zhu CY, Gao XS, You X-Y, Yao C. Hg2+-selective ratiometric and “off−on” chemosensor based on the Azadiene−pyrene derivative. Org Lett. 2010;12(2010):2566–9.CrossRef Zhou Y, Zhu CY, Gao XS, You X-Y, Yao C. Hg2+-selective ratiometric and “off−on” chemosensor based on the Azadiene−pyrene derivative. Org Lett. 2010;12(2010):2566–9.CrossRef
149.
go back to reference Zhu J, Chang H, Li J-J, Li X, Zhao J-W. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II). Spectrochim Acta A. 2018;188:170–8.CrossRef Zhu J, Chang H, Li J-J, Li X, Zhao J-W. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II). Spectrochim Acta A. 2018;188:170–8.CrossRef
150.
go back to reference Zhu J, Zhao Z-J, Li J-J, Zhao J-W. CdTe quantum dot based fluorescent probes for selective detection of Hg(II): the effect of particle size. Spectrochim Acta A. 2017;177:140–6.CrossRef Zhu J, Zhao Z-J, Li J-J, Zhao J-W. CdTe quantum dot based fluorescent probes for selective detection of Hg(II): the effect of particle size. Spectrochim Acta A. 2017;177:140–6.CrossRef
151.
go back to reference Zhu H, Yu T, Xu H, Zhang K, Jiang H, Zhang Z, et al. Fluorescent nanohybrid of gold nanoclusters and quantum dots for visual determination of lead ions. ACS Appl Mater Interfaces. 2014;6:21461–7.CrossRef Zhu H, Yu T, Xu H, Zhang K, Jiang H, Zhang Z, et al. Fluorescent nanohybrid of gold nanoclusters and quantum dots for visual determination of lead ions. ACS Appl Mater Interfaces. 2014;6:21461–7.CrossRef
Metadata
Title
Luminescence and Fluorescence Ion Sensing
Authors
Faheem Amin
Yasir Iqbal
Ghenadii Korotcenkov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_14

Premium Partners