Skip to main content
Top

2023 | OriginalPaper | Chapter

15. Photoelectrochemical Ion Sensors

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Environmental pollution poses threat to living organisms and ecosystem owing to various heavy metal ion-based toxic pollutants. It is highly essential to design a simple, low-cost, and reliable approach to detect these pollutants in the environment. It is known that the existing sophisticated traditional detection techniques require a very high maintenance as compared to the one that is required in the photoelectrochemical (PEC) method. PEC is a low-cost, promising technique to convert chemical to electrical energy using light photons and at an applied electrical bias. PEC sensors play a significant role in chemical as well as biosensing due to their ability to detect biomolecules. These sensors employ light as a source as input, and a generated photocurrent as output signal that imparts high sensitivity and selectivity during the detection. The light sensitivity of semiconductors and electrochemical response render these sensors a precise capability of detecting various chemical and biological species. This book chapter emphasises on the principle and mechanism of photo-induced charge generation and consequent charge separation in the PEC sensors. The critical and crucial processes involved in the sensing mechanism of PEC process are briefly discussed to improve the understanding in the area of detection. The concise study of the progress in photoactive materials including metal-oxide, cadmium-chalcogenides, quantum-dots, carbon-based and other potential materials, is presented. Application of the PEC sensors for the detection of metal ions is briefly explained in conjunction to present chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aruchamy A, Aravamudan G, Subba Rao GVS. Semiconductor based photoelectrochemical cells for solar energy based conversion- an overview. Bull Mater Sci. 1982;4:483–526.CrossRef Aruchamy A, Aravamudan G, Subba Rao GVS. Semiconductor based photoelectrochemical cells for solar energy based conversion- an overview. Bull Mater Sci. 1982;4:483–526.CrossRef
2.
go back to reference Bagheri Hariri M, Siavash Moakhar R, Sharifi Abdar P, et al. Facile and ultra-sensitive voltammetric electrodetection of Hg2+ in aqueous media using electrodeposited AuPtNPs/ITO. Anal Methods. 2021;13:2688–700.CrossRef Bagheri Hariri M, Siavash Moakhar R, Sharifi Abdar P, et al. Facile and ultra-sensitive voltammetric electrodetection of Hg2+ in aqueous media using electrodeposited AuPtNPs/ITO. Anal Methods. 2021;13:2688–700.CrossRef
3.
go back to reference Bai X, Zhang Y, Gao W, et al. Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline. Biosens Bioelectron. 2020;168:112522.CrossRef Bai X, Zhang Y, Gao W, et al. Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline. Biosens Bioelectron. 2020;168:112522.CrossRef
4.
go back to reference Bai J, Zhou B. Titanium dioxide nanomaterials for sensor applications. Chem Rev. 2014;114:10131–76.CrossRef Bai J, Zhou B. Titanium dioxide nanomaterials for sensor applications. Chem Rev. 2014;114:10131–76.CrossRef
5.
go back to reference Bakhsh EM, Khan SB, Marwani HM, et al. Efficient electrochemical detection and extraction of copper ions using ZnSe–CdSe/SiO2 core–shell nanomaterial. J Ind Eng Chem. 2019;73:118–27.CrossRef Bakhsh EM, Khan SB, Marwani HM, et al. Efficient electrochemical detection and extraction of copper ions using ZnSe–CdSe/SiO2 core–shell nanomaterial. J Ind Eng Chem. 2019;73:118–27.CrossRef
6.
go back to reference Bao C, Zhu G, Yang J, et al. Small molecular amine mediated synthesis of hydrophilic CdS nanorods and their photoelectrochemical water splitting performance. Dalt Trans. 2014;44:1465–72.CrossRef Bao C, Zhu G, Yang J, et al. Small molecular amine mediated synthesis of hydrophilic CdS nanorods and their photoelectrochemical water splitting performance. Dalt Trans. 2014;44:1465–72.CrossRef
7.
go back to reference Cai Y, Kozhummal R, Kübel C, et al. Spatial separation of photogenerated electron–hole pairs in solution-grown ZnO tandem n–p core–shell nanowire arrays toward highly sensitive photoelectrochemical detection of hydrogen peroxide. J Mater Chem A. 2017;5:14397–405.CrossRef Cai Y, Kozhummal R, Kübel C, et al. Spatial separation of photogenerated electron–hole pairs in solution-grown ZnO tandem n–p core–shell nanowire arrays toward highly sensitive photoelectrochemical detection of hydrogen peroxide. J Mater Chem A. 2017;5:14397–405.CrossRef
8.
go back to reference Cai J, Sheng P, Zhou L, et al. Label-free photoelectrochemical immunosensor based on CdTe/CdS co-sensitized TiO2 nanotube array structure for octachlorostyrene detection. Biosens Bioelectron. 2013;50:66–71.CrossRef Cai J, Sheng P, Zhou L, et al. Label-free photoelectrochemical immunosensor based on CdTe/CdS co-sensitized TiO2 nanotube array structure for octachlorostyrene detection. Biosens Bioelectron. 2013;50:66–71.CrossRef
9.
go back to reference Cao JT, Liao XJ, Wang YL, Liu YM. A novel photoelectrochemical strategy for lead ion detection based on CdSe quantum dots co-sensitized ZnO-CdS nanostructure. J Electroanal Chem. 2021;880:114828.CrossRef Cao JT, Liao XJ, Wang YL, Liu YM. A novel photoelectrochemical strategy for lead ion detection based on CdSe quantum dots co-sensitized ZnO-CdS nanostructure. J Electroanal Chem. 2021;880:114828.CrossRef
10.
go back to reference Chen S, Nan H, Zhang X, et al. One-step hydrothermal treatment to fabricate Bi2WO6-reduced graphene oxide nanocomposites for enhanced visible light photoelectrochemical performance. J Mater Chem B. 2017;5:3718–27.CrossRef Chen S, Nan H, Zhang X, et al. One-step hydrothermal treatment to fabricate Bi2WO6-reduced graphene oxide nanocomposites for enhanced visible light photoelectrochemical performance. J Mater Chem B. 2017;5:3718–27.CrossRef
11.
go back to reference Dana J, Debnath T, Maity P, Ghosh HN. Enhanced charge separation in an epitaxial metal–semiconductor nanohybrid material anchored with an organic molecule. J Phys Chem C. 2015;119:22181–9.CrossRef Dana J, Debnath T, Maity P, Ghosh HN. Enhanced charge separation in an epitaxial metal–semiconductor nanohybrid material anchored with an organic molecule. J Phys Chem C. 2015;119:22181–9.CrossRef
12.
go back to reference Dashtian K, Hajati S, Ghaedi M. L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosens Bioelectron. 2020;165:112346.CrossRef Dashtian K, Hajati S, Ghaedi M. L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosens Bioelectron. 2020;165:112346.CrossRef
13.
go back to reference Devadoss A, Sudhagar P, Terashima C, et al. Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies. J Photochem Photobiol C: Photochem Rev. 2015;24:43–63.CrossRef Devadoss A, Sudhagar P, Terashima C, et al. Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies. J Photochem Photobiol C: Photochem Rev. 2015;24:43–63.CrossRef
14.
go back to reference Esteves ACC, Trindade T. Synthetic studies on II/VI semiconductor quantum dots. Curr Opin Solid State Mater Sci. 2002;6:347–53.CrossRefADS Esteves ACC, Trindade T. Synthetic studies on II/VI semiconductor quantum dots. Curr Opin Solid State Mater Sci. 2002;6:347–53.CrossRefADS
15.
go back to reference Fan D, Ren X, Wang H, et al. Ultrasensitive sandwich-type photoelectrochemical immunosensor based on CdSe sensitized La-TiO2 matrix and signal amplification of polystyrene@Ab2 composites. Biosens Bioelectron. 2017;87:593–9.CrossRef Fan D, Ren X, Wang H, et al. Ultrasensitive sandwich-type photoelectrochemical immunosensor based on CdSe sensitized La-TiO2 matrix and signal amplification of polystyrene@Ab2 composites. Biosens Bioelectron. 2017;87:593–9.CrossRef
16.
go back to reference Fan GC, Ren XL, Zhu C, et al. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosens Bioelectron. 2014;59:45–53.CrossRef Fan GC, Ren XL, Zhu C, et al. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosens Bioelectron. 2014;59:45–53.CrossRef
17.
go back to reference Foo CY, Lim HN, Pandikumar A, et al. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions. J Hazard Mater. 2016;304:400–8.CrossRef Foo CY, Lim HN, Pandikumar A, et al. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions. J Hazard Mater. 2016;304:400–8.CrossRef
18.
go back to reference Frumar M, Frumarova B, Nemec P, et al. Thin chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors. J Non-Cryst Solids. 2006;352:544–61.CrossRefADS Frumar M, Frumarova B, Nemec P, et al. Thin chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors. J Non-Cryst Solids. 2006;352:544–61.CrossRefADS
19.
go back to reference Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.CrossRefADS Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.CrossRefADS
20.
go back to reference Gao B, Zhao X, Liang Z, et al. CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal Chem. 2020;93:820–7.CrossRef Gao B, Zhao X, Liang Z, et al. CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal Chem. 2020;93:820–7.CrossRef
21.
go back to reference Grinyte R, Barroso J, Díez-Buitrago B, et al. Photoelectrochemical detection of copper ions by modulating the growth of CdS quantum dots. Anal Chim Acta. 2017;986:42–7.CrossRef Grinyte R, Barroso J, Díez-Buitrago B, et al. Photoelectrochemical detection of copper ions by modulating the growth of CdS quantum dots. Anal Chim Acta. 2017;986:42–7.CrossRef
22.
go back to reference Guo Z, Jiang K, Jiang H, et al. Photoelectrochemical aptasensor for sensitive detection of tetracycline in soil based on CdTe-BiOBr heterojunction: improved photoactivity enabled by Z-scheme electron transfer pathway. J Hazard Mater. 2022;424:127498.CrossRef Guo Z, Jiang K, Jiang H, et al. Photoelectrochemical aptasensor for sensitive detection of tetracycline in soil based on CdTe-BiOBr heterojunction: improved photoactivity enabled by Z-scheme electron transfer pathway. J Hazard Mater. 2022;424:127498.CrossRef
23.
go back to reference Han H, Song T, Lee E-K, et al. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano. 2012;6:8308–15.CrossRef Han H, Song T, Lee E-K, et al. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano. 2012;6:8308–15.CrossRef
25.
go back to reference Hao H, Hao S, Hou H, et al. A novel label-free photoelectrochemical immunosensor based on CdSe quantum dots sensitized Ho3+/Yb3+-TiO2 for the detection of Vibrio parahaemolyticus. Methods. 2019;168:94–101.CrossRef Hao H, Hao S, Hou H, et al. A novel label-free photoelectrochemical immunosensor based on CdSe quantum dots sensitized Ho3+/Yb3+-TiO2 for the detection of Vibrio parahaemolyticus. Methods. 2019;168:94–101.CrossRef
26.
go back to reference He X, Zhao X, Deng W, et al. CdSe quantum dots-decorated ZnIn2S4 nanosheets for “signal-on” photoelectrochemical aptasensing of ATP by integrating exciton energy transfer with exciton-plasmon coupling. Sensors Actuators B Chem. 2021;348:130686.CrossRef He X, Zhao X, Deng W, et al. CdSe quantum dots-decorated ZnIn2S4 nanosheets for “signal-on” photoelectrochemical aptasensing of ATP by integrating exciton energy transfer with exciton-plasmon coupling. Sensors Actuators B Chem. 2021;348:130686.CrossRef
27.
go back to reference He X, Yoo JE, Lee MH, Bae J. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology. 2017;28:245402.CrossRefADS He X, Yoo JE, Lee MH, Bae J. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology. 2017;28:245402.CrossRefADS
28.
go back to reference Hou T, Zhang L, Sun X, Li F. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition. Biosens Bioelectron. 2016;75:359–64.CrossRef Hou T, Zhang L, Sun X, Li F. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition. Biosens Bioelectron. 2016;75:359–64.CrossRef
29.
go back to reference Hu C, Zheng J, Su X, et al. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light. Anal Chem. 2013;85:10612–9.CrossRef Hu C, Zheng J, Su X, et al. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light. Anal Chem. 2013;85:10612–9.CrossRef
31.
go back to reference Hulanicki A, Glab S, Ingman F. Chemical sensors: definitions and classification. Pure Appl Chem. 1991;63:1247–50.CrossRef Hulanicki A, Glab S, Ingman F. Chemical sensors: definitions and classification. Pure Appl Chem. 1991;63:1247–50.CrossRef
32.
go back to reference Huo K, Gao B, Fu J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4:17300–24.CrossRefADS Huo K, Gao B, Fu J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4:17300–24.CrossRefADS
33.
go back to reference Ibrahim I, Lim HN, Huang NM, et al. Selective and sensitive visible-light-prompt photoelectrochemical sensor of Cu2+ based on CdS nanorods modified with au and graphene quantum dots. J Hazard Mater. 2020;391:122248.CrossRef Ibrahim I, Lim HN, Huang NM, et al. Selective and sensitive visible-light-prompt photoelectrochemical sensor of Cu2+ based on CdS nanorods modified with au and graphene quantum dots. J Hazard Mater. 2020;391:122248.CrossRef
34.
go back to reference Ibrahim I, Lim HN, Zawawi RM, et al. A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. J Mater Chem B. 2018;6:4551–68.CrossRef Ibrahim I, Lim HN, Zawawi RM, et al. A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. J Mater Chem B. 2018;6:4551–68.CrossRef
35.
go back to reference Ibrahim I, Lim HN, Abou-Zied OK, et al. Cadmium sulfide nanoparticles decorated with Au quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(II) ions. J Phys Chem C. 2016;120:22202–14.CrossRef Ibrahim I, Lim HN, Abou-Zied OK, et al. Cadmium sulfide nanoparticles decorated with Au quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(II) ions. J Phys Chem C. 2016;120:22202–14.CrossRef
36.
go back to reference Ibrahim I, Lim HN, Huang NM, Pandikumar A. Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper(II) ions. PLoS One. 2016;11:e0154557.CrossRef Ibrahim I, Lim HN, Huang NM, Pandikumar A. Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper(II) ions. PLoS One. 2016;11:e0154557.CrossRef
37.
go back to reference Shi J-J, Zhu J-C, Zhao M, et al. Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS2-CdS:Mn nanocomposites by the formation of G-quadruplex structure. Talanta. 2018;183:237–44.CrossRef Shi J-J, Zhu J-C, Zhao M, et al. Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS2-CdS:Mn nanocomposites by the formation of G-quadruplex structure. Talanta. 2018;183:237–44.CrossRef
38.
go back to reference Kim SS, Lee JW, Yun JM, Na SI. 2-Dimensional MoS2 nanosheets as transparent and highly electrocatalytic counter electrode in dye-sensitized solar cells: effect of thermal treatments. J Ind Eng Chem. 2015;29:71–7.CrossRef Kim SS, Lee JW, Yun JM, Na SI. 2-Dimensional MoS2 nanosheets as transparent and highly electrocatalytic counter electrode in dye-sensitized solar cells: effect of thermal treatments. J Ind Eng Chem. 2015;29:71–7.CrossRef
39.
go back to reference Krishnan B, Shaji S, Acosta-Enríquez MC, et al. Group II–VI semiconductors. In: Pech-Canul M, Ravindra N, editors. Semiconductors. Cham: Springer; 2019. p. 397–464.CrossRef Krishnan B, Shaji S, Acosta-Enríquez MC, et al. Group II–VI semiconductors. In: Pech-Canul M, Ravindra N, editors. Semiconductors. Cham: Springer; 2019. p. 397–464.CrossRef
40.
go back to reference van de Krol R. Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M, editors. Photoelectrochemical hydrogen production, Electronic materials: science & technology, vol. 102. Boston, MA: Springer; 2012. p. 13–67.CrossRef van de Krol R. Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M, editors. Photoelectrochemical hydrogen production, Electronic materials: science & technology, vol. 102. Boston, MA: Springer; 2012. p. 13–67.CrossRef
41.
go back to reference Le S, Jiang T, Li Y, et al. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl Catal B Environ. 2017;200:601–10.CrossRef Le S, Jiang T, Li Y, et al. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl Catal B Environ. 2017;200:601–10.CrossRef
42.
go back to reference Lee Y-L, Lo Y-S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater. 2009;19:604–9.CrossRef Lee Y-L, Lo Y-S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater. 2009;19:604–9.CrossRef
43.
go back to reference Lee Y-L, Chi C-F, Liau S-Y. CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem Mater. 2009;22:922–7.CrossRef Lee Y-L, Chi C-F, Liau S-Y. CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem Mater. 2009;22:922–7.CrossRef
44.
go back to reference Leng D, Zhao J, Ren X, et al. MoSe2/CdSe heterojunction destruction by cation exchange for photoelectrochemical immunoassays with a controlled-release strategy. Anal Chem. 2021;93:10712–8.CrossRef Leng D, Zhao J, Ren X, et al. MoSe2/CdSe heterojunction destruction by cation exchange for photoelectrochemical immunoassays with a controlled-release strategy. Anal Chem. 2021;93:10712–8.CrossRef
45.
go back to reference Li S, Xing Z, Feng J, et al. A sensitive biosensor of CdS sensitized BiVO4/GaON composite for the photoelectrochemical immunoassay of procalcitonin. Sensors Actuators B Chem. 2021;329:129244.CrossRef Li S, Xing Z, Feng J, et al. A sensitive biosensor of CdS sensitized BiVO4/GaON composite for the photoelectrochemical immunoassay of procalcitonin. Sensors Actuators B Chem. 2021;329:129244.CrossRef
46.
go back to reference Li H, Zhao Y, Yue M-e, Jie G. Signal-off photoelectrochemical biosensing platform based on hybridization chain-doped manganese porphyrin quenching on CdSe signal coupling with cyclic amplification for thrombin detection. J Electroanal Chem. 2020;879:114803.CrossRef Li H, Zhao Y, Yue M-e, Jie G. Signal-off photoelectrochemical biosensing platform based on hybridization chain-doped manganese porphyrin quenching on CdSe signal coupling with cyclic amplification for thrombin detection. J Electroanal Chem. 2020;879:114803.CrossRef
47.
go back to reference Li L, Li B, Liu H, et al. Photoelectrochemical sensing of hydrogen peroxide using TiO2 nanotube arrays decorated with RGO/CdS. J Alloys Compd. 2020;815:152241.CrossRef Li L, Li B, Liu H, et al. Photoelectrochemical sensing of hydrogen peroxide using TiO2 nanotube arrays decorated with RGO/CdS. J Alloys Compd. 2020;815:152241.CrossRef
48.
go back to reference Li Z, Dong W, Du X, et al. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+. Microchem J. 2020;152:104259.CrossRef Li Z, Dong W, Du X, et al. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+. Microchem J. 2020;152:104259.CrossRef
49.
go back to reference Li K, Han M, Chen R, et al. Hexagonal@cubic CdS Core@Shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv Mater. 2016;28:8906–11.CrossRef Li K, Han M, Chen R, et al. Hexagonal@cubic CdS Core@Shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv Mater. 2016;28:8906–11.CrossRef
50.
go back to reference Li S, Gu X, Zhao Y, et al. Photoelectrochemical determination of Pb2+ ions by using TiO2 nanorod arrays grown on FTO substrates via a facile two-stage hydrothermal route. J Mater Sci Mater Electron. 2016;278(27):8455–63.CrossRef Li S, Gu X, Zhao Y, et al. Photoelectrochemical determination of Pb2+ ions by using TiO2 nanorod arrays grown on FTO substrates via a facile two-stage hydrothermal route. J Mater Sci Mater Electron. 2016;278(27):8455–63.CrossRef
51.
go back to reference Li P, Huang S, Pan HC. Synthesis and characterization of Au-CdS composite thin films for photoelectrochemical sensing of Hg2+ ions. Adv Mater Res. 2015;1088:91–5.CrossRef Li P, Huang S, Pan HC. Synthesis and characterization of Au-CdS composite thin films for photoelectrochemical sensing of Hg2+ ions. Adv Mater Res. 2015;1088:91–5.CrossRef
52.
go back to reference Li X, Yang Q, Hua H, et al. CdS/CdSe core/shell nanowall arrays for high sensitive photoelectrochemical sensors. J Alloys Compd. 2015;630:94–9.CrossRef Li X, Yang Q, Hua H, et al. CdS/CdSe core/shell nanowall arrays for high sensitive photoelectrochemical sensors. J Alloys Compd. 2015;630:94–9.CrossRef
53.
go back to reference Li X, Hu C, Zhao Z, et al. Three-dimensional CdS nanostructure for photoelectrochemical sensor. Sensors Actuators B Chem. 2013;182:461–6.CrossRef Li X, Hu C, Zhao Z, et al. Three-dimensional CdS nanostructure for photoelectrochemical sensor. Sensors Actuators B Chem. 2013;182:461–6.CrossRef
54.
go back to reference Li Y-J, Ma M-J, Zhu J-J. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. Anal Chem. 2012;84:10492–9.CrossRef Li Y-J, Ma M-J, Zhu J-J. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. Anal Chem. 2012;84:10492–9.CrossRef
55.
go back to reference Liu J, Liu Y, Wang W, et al. Component reconstitution-driven photoelectrochemical sensor for sensitive detection of Cu2+ based on advanced CuS/CdS p-n junction. Sci China Chem. 2019;6212(62):1725–31.CrossRef Liu J, Liu Y, Wang W, et al. Component reconstitution-driven photoelectrochemical sensor for sensitive detection of Cu2+ based on advanced CuS/CdS p-n junction. Sci China Chem. 2019;6212(62):1725–31.CrossRef
56.
go back to reference Liu Y, Yan K, Zhang J. Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces. 2016;8(42):28255–64.CrossRef Liu Y, Yan K, Zhang J. Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl Mater Interfaces. 2016;8(42):28255–64.CrossRef
57.
go back to reference Liu J, Xu S, Liu L, Sun DD. The size and dispersion effect of modified graphene oxide sheets on the photocatalytic H2 generation activity of TiO2 nanorods. Carbon N Y. 2013;60:445–52.CrossRef Liu J, Xu S, Liu L, Sun DD. The size and dispersion effect of modified graphene oxide sheets on the photocatalytic H2 generation activity of TiO2 nanorods. Carbon N Y. 2013;60:445–52.CrossRef
58.
go back to reference Fagiolari L, Bella F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci. 2019;12:3437–72.CrossRef Fagiolari L, Bella F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci. 2019;12:3437–72.CrossRef
59.
go back to reference Luo Y, Dong C, Li X, Tian Y. A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. J Electroanal Chem. 2015;759:51–4.CrossRef Luo Y, Dong C, Li X, Tian Y. A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. J Electroanal Chem. 2015;759:51–4.CrossRef
60.
go back to reference Ma W, Wang L, Zhang N, et al. Biomolecule-free, selective detection of o-diphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform. Anal Chem. 2015;87:4844–50.CrossRef Ma W, Wang L, Zhang N, et al. Biomolecule-free, selective detection of o-diphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform. Anal Chem. 2015;87:4844–50.CrossRef
61.
go back to reference Manikandan M, Revathi C, Senthilkumar P, et al. CdTe nanorods for nonenzymatic hydrogen peroxide biosensor and optical limiting applications. Ionics. 2019;264(26):2003–10. Manikandan M, Revathi C, Senthilkumar P, et al. CdTe nanorods for nonenzymatic hydrogen peroxide biosensor and optical limiting applications. Ionics. 2019;264(26):2003–10.
62.
go back to reference Mao L, Gao M, Xue X, et al. Organic-inorganic nanoparticles molecularly imprinted photoelectrochemical sensor for α-solanine based on p-type polymer dots and n-CdS heterojunction. Anal Chim Acta. 2019;1059:94–102.CrossRef Mao L, Gao M, Xue X, et al. Organic-inorganic nanoparticles molecularly imprinted photoelectrochemical sensor for α-solanine based on p-type polymer dots and n-CdS heterojunction. Anal Chim Acta. 2019;1059:94–102.CrossRef
63.
go back to reference Maria da Costa Silva L, Farias Melo A, Medeiros Salgado A. Biosensors for environmental applications. In: Somerset V, editor. Environmental biosensors. InTech.; 2011. p. 3–16. Maria da Costa Silva L, Farias Melo A, Medeiros Salgado A. Biosensors for environmental applications. In: Somerset V, editor. Environmental biosensors. InTech.; 2011. p. 3–16.
64.
go back to reference Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;46(4):435–46.CrossRefADS Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;46(4):435–46.CrossRefADS
65.
go back to reference Meng L, Xiao K, Zhang X, et al. DNA-linked CdSe QDs/AGQDs “Z-scheme” system: ultrasensitive and highly selective photoelectrochemical sensing platform with negative background signal. Sensors Actuators B Chem. 2020;305:127480.CrossRef Meng L, Xiao K, Zhang X, et al. DNA-linked CdSe QDs/AGQDs “Z-scheme” system: ultrasensitive and highly selective photoelectrochemical sensing platform with negative background signal. Sensors Actuators B Chem. 2020;305:127480.CrossRef
66.
go back to reference Mourzina YG, Schubert J, Zander W, et al. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim Acta. 2001;47:251–8.CrossRef Mourzina YG, Schubert J, Zander W, et al. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim Acta. 2001;47:251–8.CrossRef
67.
go back to reference Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 2002;115:8706–15.CrossRef Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 2002;115:8706–15.CrossRef
68.
go back to reference Nguyen Van M, Li W, Sheng P, et al. Photoelectrochemical label-free immunoassay of octachlorostyrene based on heterogeneous CdSe/CdS/Pt/TiO2 nanotube array. J Electroanal Chem. 2015;736:69–75.CrossRef Nguyen Van M, Li W, Sheng P, et al. Photoelectrochemical label-free immunoassay of octachlorostyrene based on heterogeneous CdSe/CdS/Pt/TiO2 nanotube array. J Electroanal Chem. 2015;736:69–75.CrossRef
69.
go back to reference Pang X, Pan J, Gao P, et al. A visible light induced photoelectrochemical aptsensor constructed by aligned ZnO@CdTe core shell nanocable arrays/carboxylated g-C3N4 for the detection of Proprotein convertase subtilisin/kexin type 6 gene. Biosens Bioelectron. 2015;74:49–58.CrossRef Pang X, Pan J, Gao P, et al. A visible light induced photoelectrochemical aptsensor constructed by aligned ZnO@CdTe core shell nanocable arrays/carboxylated g-C3N4 for the detection of Proprotein convertase subtilisin/kexin type 6 gene. Biosens Bioelectron. 2015;74:49–58.CrossRef
70.
go back to reference Pang X, Pan J, Wang L, et al. CdSe quantum dot-functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6. Biosens Bioelectron. 2015;71:88–97.CrossRef Pang X, Pan J, Wang L, et al. CdSe quantum dot-functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6. Biosens Bioelectron. 2015;71:88–97.CrossRef
71.
go back to reference Pareek A, Paik P, Borse PH. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell. Dalt Trans. 2016;45:11120–8.CrossRef Pareek A, Paik P, Borse PH. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell. Dalt Trans. 2016;45:11120–8.CrossRef
72.
go back to reference Pareek A, Paik P, Borse PH. Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell. Langmuir. 2014;30:15540.CrossRef Pareek A, Paik P, Borse PH. Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell. Langmuir. 2014;30:15540.CrossRef
73.
go back to reference Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev. 2006;11:114–28. Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev. 2006;11:114–28.
74.
go back to reference Peng J, Huang Q, Liu Y, et al. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sensors Actuators B Chem. 2019;294:157–65.CrossRef Peng J, Huang Q, Liu Y, et al. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sensors Actuators B Chem. 2019;294:157–65.CrossRef
75.
go back to reference Qin C, Bai X, Zhang Y, Gao K. Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine. Microchim Acta. 2018;185(5):2278.CrossRef Qin C, Bai X, Zhang Y, Gao K. Photoelectrochemical CdSe/TiO2 nanotube array microsensor for high-resolution in-situ detection of dopamine. Microchim Acta. 2018;185(5):2278.CrossRef
76.
go back to reference Qin Q, Bai X, Hua Z. Electrochemical synthesis of well-dispersed CdTe nanoparticles on reduced graphene oxide and its photoelectrochemical sensing of catechol. J Electrochem Soc. 2017;164:H241–9.CrossRef Qin Q, Bai X, Hua Z. Electrochemical synthesis of well-dispersed CdTe nanoparticles on reduced graphene oxide and its photoelectrochemical sensing of catechol. J Electrochem Soc. 2017;164:H241–9.CrossRef
77.
go back to reference Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B. 2020;8:2541–61.CrossRef Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B. 2020;8:2541–61.CrossRef
79.
go back to reference Rodenas P, Song T, Sudhagar P, et al. Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation. Adv Energy Mater. 2013;3:176–82.CrossRef Rodenas P, Song T, Sudhagar P, et al. Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation. Adv Energy Mater. 2013;3:176–82.CrossRef
80.
go back to reference Roushani M, Shamsipur M, Rajabi HR. Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode. J Electroanal Chem. 2014;712:19–24.CrossRef Roushani M, Shamsipur M, Rajabi HR. Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode. J Electroanal Chem. 2014;712:19–24.CrossRef
81.
go back to reference Schwarzenbach RP, Egli T, Hofstetter TB, et al. Global water pollution and human health. Annu Rev Environ Resour. 2010;35:109–36.CrossRef Schwarzenbach RP, Egli T, Hofstetter TB, et al. Global water pollution and human health. Annu Rev Environ Resour. 2010;35:109–36.CrossRef
82.
go back to reference Shen Q, Zhao X, Zhou S, et al. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+. J Phys Chem C. 2011;115:17958–64.CrossRef Shen Q, Zhao X, Zhou S, et al. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+. J Phys Chem C. 2011;115:17958–64.CrossRef
83.
go back to reference Shi L, Yin Y, Zhang LC, et al. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review. Appl Catal B Environ. 2019;248:405–22.CrossRef Shi L, Yin Y, Zhang LC, et al. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review. Appl Catal B Environ. 2019;248:405–22.CrossRef
84.
go back to reference Siavash Moakhar R, Goh GKL, Dolati A, Ghorbani M. Sunlight-driven photoelectrochemical sensor for direct determination of hexavalent chromium based on Au decorated rutile TiO2 nanorods. Appl Catal B Environ. 2017;201:411–8.CrossRef Siavash Moakhar R, Goh GKL, Dolati A, Ghorbani M. Sunlight-driven photoelectrochemical sensor for direct determination of hexavalent chromium based on Au decorated rutile TiO2 nanorods. Appl Catal B Environ. 2017;201:411–8.CrossRef
85.
go back to reference Siavash Moakhar R, Goh GKL, Dolati A, Ghorbani M. A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium. Electrochem Commun. 2015;61:110–3.CrossRef Siavash Moakhar R, Goh GKL, Dolati A, Ghorbani M. A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium. Electrochem Commun. 2015;61:110–3.CrossRef
86.
go back to reference Song J, Wang J, Wang X, et al. Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosens Bioelectron. 2016;80:614–20.CrossRefADS Song J, Wang J, Wang X, et al. Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosens Bioelectron. 2016;80:614–20.CrossRefADS
87.
go back to reference Stradiotto NR, Yamanaka H, Zanoni MVB. Electrochemical sensors: a powerful tool in analytical chemistry. J Braz Chem Soc. 2003;14:159–73.CrossRef Stradiotto NR, Yamanaka H, Zanoni MVB. Electrochemical sensors: a powerful tool in analytical chemistry. J Braz Chem Soc. 2003;14:159–73.CrossRef
88.
go back to reference Sudhagar P, González-Pedro V, Mora-Seró I, et al. Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications. J Mater Chem. 2012;22:14228–35.CrossRef Sudhagar P, González-Pedro V, Mora-Seró I, et al. Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications. J Mater Chem. 2012;22:14228–35.CrossRef
89.
go back to reference Sudhagar P, Jung JH, Park S, et al. The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochem Commun. 2009;11:2220–4.CrossRef Sudhagar P, Jung JH, Park S, et al. The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochem Commun. 2009;11:2220–4.CrossRef
90.
go back to reference Sun B, Dong J, Cui L, et al. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosens Bioelectron. 2019;124–125:1–7.CrossRef Sun B, Dong J, Cui L, et al. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosens Bioelectron. 2019;124–125:1–7.CrossRef
91.
go back to reference Sunaina, Ganguli AK, Mehta SK. High performance ZnSe sensitized ZnO heterostructures for photo-detection applications. J Alloys Compd. 2022;894:162263.CrossRef Sunaina, Ganguli AK, Mehta SK. High performance ZnSe sensitized ZnO heterostructures for photo-detection applications. J Alloys Compd. 2022;894:162263.CrossRef
92.
go back to reference Tang J, Li J, Zhang Y, et al. Mesoporous Fe2O3–CdS heterostructures for real-time photoelectrochemical dynamic probing of Cu2+. Anal Chem. 2015;87:6703–8.CrossRef Tang J, Li J, Zhang Y, et al. Mesoporous Fe2O3–CdS heterostructures for real-time photoelectrochemical dynamic probing of Cu2+. Anal Chem. 2015;87:6703–8.CrossRef
93.
go back to reference Tanne J, Schäfer D, Khalid W, et al. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal Chem. 2011;83:7778–85.CrossRef Tanne J, Schäfer D, Khalid W, et al. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal Chem. 2011;83:7778–85.CrossRef
94.
go back to reference Tian J, Zhao H, Quan X, et al. Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sensors Actuators B Chem. 2014;196:532–8.CrossRef Tian J, Zhao H, Quan X, et al. Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sensors Actuators B Chem. 2014;196:532–8.CrossRef
95.
go back to reference Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.CrossRef Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.CrossRef
97.
go back to reference Wang C, Dai J, Guo S, et al. Efficient photoelectrochemical sensor of Cu2+ based on ZnO-graphene nanocomposite sensitized with hexagonal CdS by calcination method. J Electroanal Chem. 2021;893:115330.CrossRef Wang C, Dai J, Guo S, et al. Efficient photoelectrochemical sensor of Cu2+ based on ZnO-graphene nanocomposite sensitized with hexagonal CdS by calcination method. J Electroanal Chem. 2021;893:115330.CrossRef
98.
go back to reference Wang X, Li G, Peng J, et al. The Au/ZnSe/ZnO heterojunction improves the electron transfer behavior to enhance the detection performance of ascorbic acid. J Alloys Compd. 2021;873:159721.CrossRef Wang X, Li G, Peng J, et al. The Au/ZnSe/ZnO heterojunction improves the electron transfer behavior to enhance the detection performance of ascorbic acid. J Alloys Compd. 2021;873:159721.CrossRef
99.
go back to reference Wang J, Pan Y, Jiang L, et al. Photoelectrochemical determination of Cu2+ using a WO3/CdS heterojunction photoanode. ACS Appl Mater Interfaces. 2019;11:37541–9.CrossRef Wang J, Pan Y, Jiang L, et al. Photoelectrochemical determination of Cu2+ using a WO3/CdS heterojunction photoanode. ACS Appl Mater Interfaces. 2019;11:37541–9.CrossRef
100.
go back to reference Wang R, Zu M, Yang S, et al. Visible-light-driven photoelectrochemical determination of Cu2+ based on CdS sensitized hydrogenated TiO2 nanorod arrays. Sensors Actuators B Chem. 2018;270:270–6.CrossRef Wang R, Zu M, Yang S, et al. Visible-light-driven photoelectrochemical determination of Cu2+ based on CdS sensitized hydrogenated TiO2 nanorod arrays. Sensors Actuators B Chem. 2018;270:270–6.CrossRef
101.
go back to reference Wang Y, Wang P, Wu Y, Di J. A cathodic “signal-on” photoelectrochemical sensor for Hg2+ detection based on ion-exchange with ZnS quantum dots. Sensors Actuators B Chem. 2018;254:910–5.CrossRef Wang Y, Wang P, Wu Y, Di J. A cathodic “signal-on” photoelectrochemical sensor for Hg2+ detection based on ion-exchange with ZnS quantum dots. Sensors Actuators B Chem. 2018;254:910–5.CrossRef
102.
go back to reference Wang Y, Ge S, Zhang L, et al. Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO2 nanorods equipped with Prussian blue electrochromic display. Biosens Bioelectron. 2017;89:859–65.CrossRef Wang Y, Ge S, Zhang L, et al. Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO2 nanorods equipped with Prussian blue electrochromic display. Biosens Bioelectron. 2017;89:859–65.CrossRef
103.
go back to reference Wang R, Yan K, Wang F, Zhang J. A highly sensitive photoelectrochemical sensor for 4-aminophenol based on CdS-graphene nanocomposites and molecularly imprinted polypyrrole. Electrochim Acta. 2014;121:102–8.CrossRef Wang R, Yan K, Wang F, Zhang J. A highly sensitive photoelectrochemical sensor for 4-aminophenol based on CdS-graphene nanocomposites and molecularly imprinted polypyrrole. Electrochim Acta. 2014;121:102–8.CrossRef
104.
go back to reference Wannier GH. The structure of electronic excitation levels in insulating crystals. Phys Rev. 1937;52:191.MATHCrossRefADS Wannier GH. The structure of electronic excitation levels in insulating crystals. Phys Rev. 1937;52:191.MATHCrossRefADS
105.
go back to reference Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron. 2005;20:2388–403.CrossRef Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron. 2005;20:2388–403.CrossRef
106.
go back to reference Wu S, Zhao Y, Deng X, et al. Oxygen defects engineered CdS/Bi2O2.33 direct Z-Scheme heterojunction for highly sensitive photoelectrochemical assay of Hg2+. Talanta. 2020;217:121090.CrossRef Wu S, Zhao Y, Deng X, et al. Oxygen defects engineered CdS/Bi2O2.33 direct Z-Scheme heterojunction for highly sensitive photoelectrochemical assay of Hg2+. Talanta. 2020;217:121090.CrossRef
107.
go back to reference Wu H, Zheng Z, Tang Y, et al. Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustain Mater Technol. 2018;18:e00075. Wu H, Zheng Z, Tang Y, et al. Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustain Mater Technol. 2018;18:e00075.
108.
go back to reference Wu P, Pan J-B, Li X-L, et al. Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing. Chem A Eur J. 2015;21:5129–35.CrossRef Wu P, Pan J-B, Li X-L, et al. Long-lived charge carriers in Mn-doped CdS quantum dots for photoelectrochemical cytosensing. Chem A Eur J. 2015;21:5129–35.CrossRef
109.
go back to reference Xie Y, Zhang M, Bin Q, et al. Photoelectrochemical immunosensor based on CdSe@BiVO4 Co-sensitized TiO2 for carcinoembryonic antigen. Biosens Bioelectron. 2020;150:111949.CrossRef Xie Y, Zhang M, Bin Q, et al. Photoelectrochemical immunosensor based on CdSe@BiVO4 Co-sensitized TiO2 for carcinoembryonic antigen. Biosens Bioelectron. 2020;150:111949.CrossRef
110.
go back to reference Xu R, Wei D, Du B, et al. A photoelectrochemical sensor for highly sensitive detection of amyloid beta based on sensitization of Mn:CdSe to Bi2WO6/CdS. Biosens Bioelectron. 2018;122:37–42.CrossRef Xu R, Wei D, Du B, et al. A photoelectrochemical sensor for highly sensitive detection of amyloid beta based on sensitization of Mn:CdSe to Bi2WO6/CdS. Biosens Bioelectron. 2018;122:37–42.CrossRef
111.
go back to reference Xu H, Huang D, Wu Y, Di J. Photoelectrochemical determination of Cu2+ ions based on assembly of Au/ZnS nanoparticles. Sensors Actuators B Chem. 2016;235:432–8.CrossRef Xu H, Huang D, Wu Y, Di J. Photoelectrochemical determination of Cu2+ ions based on assembly of Au/ZnS nanoparticles. Sensors Actuators B Chem. 2016;235:432–8.CrossRef
112.
go back to reference Yan J, Wang K, Liu Q, et al. One-pot synthesis of CdxZn1−xS–reduced graphene oxide nanocomposites with improved photoelectrochemical performance for selective determination of Cu2+. RSC Adv 2013;3:14451–14457. https://doi.org/10.1039/c3ra41118d Yan J, Wang K, Liu Q, et al. One-pot synthesis of CdxZn1−xS–reduced graphene oxide nanocomposites with improved photoelectrochemical performance for selective determination of Cu2+. RSC Adv 2013;3:14451–14457. https://​doi.​org/​10.​1039/​c3ra41118d
113.
go back to reference Yan K, Wang R, Zhang J. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens Bioelectron. 2014;53:301–4.CrossRef Yan K, Wang R, Zhang J. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens Bioelectron. 2014;53:301–4.CrossRef
114.
115.
go back to reference Ye X, Wang X, Kong Y, et al. FRET modulated signaling: a versatile strategy to construct photoelectrochemical microsensors for in vivo analysis. Angew Chemie Int Ed. 2021;60:11774–8.CrossRef Ye X, Wang X, Kong Y, et al. FRET modulated signaling: a versatile strategy to construct photoelectrochemical microsensors for in vivo analysis. Angew Chemie Int Ed. 2021;60:11774–8.CrossRef
116.
go back to reference Yogeswaran U, Chen S-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors. 2008;8:290–313.CrossRefADS Yogeswaran U, Chen S-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors. 2008;8:290–313.CrossRefADS
117.
go back to reference Yu LD, Wang YN, Zhang XY, et al. A novel signal-on photoelectrochemical platform for highly sensitive detection of alkaline phosphatase based on dual Z-scheme CdS/Bi2S3/BiOCl composites. Sensors Actuators B Chem. 2021;340:129988.CrossRef Yu LD, Wang YN, Zhang XY, et al. A novel signal-on photoelectrochemical platform for highly sensitive detection of alkaline phosphatase based on dual Z-scheme CdS/Bi2S3/BiOCl composites. Sensors Actuators B Chem. 2021;340:129988.CrossRef
118.
go back to reference Zang Y, Fan J, Ju Y, et al. Current advances in semiconductor nanomaterial-based photoelectrochemical biosensing. Chem A Eur J. 2018;24:14010–27.CrossRef Zang Y, Fan J, Ju Y, et al. Current advances in semiconductor nanomaterial-based photoelectrochemical biosensing. Chem A Eur J. 2018;24:14010–27.CrossRef
119.
go back to reference Zang Y, Lei J, Hao Q, Ju H. “Signal-on” photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. ACS Appl Mater Interfaces. 2014;6:15991–7.CrossRef Zang Y, Lei J, Hao Q, Ju H. “Signal-on” photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. ACS Appl Mater Interfaces. 2014;6:15991–7.CrossRef
120.
go back to reference Zhang L, Li P, Feng L, et al. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: a visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury (II). J Hazard Mater. 2020;387:121715.CrossRef Zhang L, Li P, Feng L, et al. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: a visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury (II). J Hazard Mater. 2020;387:121715.CrossRef
121.
go back to reference Zhang K, Lv S, Lin Z, Tang D. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron. 2017;95:34–40.CrossRef Zhang K, Lv S, Lin Z, Tang D. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron. 2017;95:34–40.CrossRef
122.
go back to reference Zhang Y, Ma H, Wu D, et al. A generalized in situ electrodeposition of Zn doped CdS-based photoelectrochemical strategy for the detection of two metal ions on the same sensing platform. Biosens Bioelectron. 2016;77:936–41.CrossRef Zhang Y, Ma H, Wu D, et al. A generalized in situ electrodeposition of Zn doped CdS-based photoelectrochemical strategy for the detection of two metal ions on the same sensing platform. Biosens Bioelectron. 2016;77:936–41.CrossRef
123.
go back to reference Zhang B, Lu L, Hu Q, et al. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron. 2014;56:243–9.CrossRef Zhang B, Lu L, Hu Q, et al. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron. 2014;56:243–9.CrossRef
124.
go back to reference Zhang X, Xu F, Zhao B, et al. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim Acta. 2014;133:615–22.CrossRef Zhang X, Xu F, Zhao B, et al. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim Acta. 2014;133:615–22.CrossRef
125.
go back to reference Zhang L, Mohamed HH, Dillert R, Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol C: Photochem Rev. 2012;13:263–76.CrossRef Zhang L, Mohamed HH, Dillert R, Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol C: Photochem Rev. 2012;13:263–76.CrossRef
126.
go back to reference Zhang X-B, Kong R-M, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem. 2011;4(1):105–28.CrossRef Zhang X-B, Kong R-M, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem. 2011;4(1):105–28.CrossRef
127.
go back to reference Zhao Y, Tan L, Gao X, et al. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron. 2018;110:239–45.CrossRef Zhao Y, Tan L, Gao X, et al. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron. 2018;110:239–45.CrossRef
128.
go back to reference Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron. 2017;92:294–304.CrossRef Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron. 2017;92:294–304.CrossRef
129.
go back to reference Zhao K, Yan X, Gu Y, et al. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small. 2016;12:245–51.CrossRef Zhao K, Yan X, Gu Y, et al. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small. 2016;12:245–51.CrossRef
130.
go back to reference Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical detection of metal ions. Analyst. 2016;141:4262–71.CrossRefADS Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical detection of metal ions. Analyst. 2016;141:4262–71.CrossRefADS
131.
go back to reference Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev. 2015;44:729–41.CrossRef Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev. 2015;44:729–41.CrossRef
132.
go back to reference Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical DNA biosensors. Chem Rev. 2014;114:7421–41.CrossRef Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical DNA biosensors. Chem Rev. 2014;114:7421–41.CrossRef
133.
go back to reference Zhao X, Zhou S, Shen Q, et al. Fabrication of glutathione photoelectrochemical biosensor using graphene–CdS nanocomposites. Analyst. 2012;137:3697–703.CrossRefADS Zhao X, Zhou S, Shen Q, et al. Fabrication of glutathione photoelectrochemical biosensor using graphene–CdS nanocomposites. Analyst. 2012;137:3697–703.CrossRefADS
134.
go back to reference Zheng XT, Than A, Ananthanaraya A, et al. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–86.CrossRef Zheng XT, Than A, Ananthanaraya A, et al. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–86.CrossRef
135.
go back to reference Zhong X, Zhang M, Guo L, et al. A dual-signal self-checking photoelectrochemical immunosensor based on the sole composite of MIL-101(Cr) and CdSe quantum dots for the detection of α-fetoprotein. Biosens Bioelectron. 2021;189:113389.CrossRef Zhong X, Zhang M, Guo L, et al. A dual-signal self-checking photoelectrochemical immunosensor based on the sole composite of MIL-101(Cr) and CdSe quantum dots for the detection of α-fetoprotein. Biosens Bioelectron. 2021;189:113389.CrossRef
Metadata
Title
Photoelectrochemical Ion Sensors
Authors
Alka Pareek
Pramod H. Borse
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_15

Premium Partners