Skip to main content
Top

2023 | OriginalPaper | Chapter

16. II–VI Semiconductor-Based Optical Temperature Sensors

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Temperature sensors or thermometers are devices that are being utilised from households to space stations and from small-scale industries to mega industries of any kind. Temperature is a fundamental quantity in the physical world, the measurement of which is explicitly important. This chapter presents an overview on a very important aspect of these temperature sensors, that is, optical temperature sensors. On the other hand, II–VI semiconductor materials are very important owing to their splendid optical properties. Hence, a number of methods and a number of parameters can be employed to realise temperature sensing, viz. luminescence, fluorescence, fibre optics, surface plasmon resonance, etc. This chapter intends to attend to all these aspects one by one. The high-end applications of temperature sensors in biological imaging and diagnosis of HeLa cells, human umbilical vein endothelial cells (HUVEC) and prostate cancer cells (PC-3) are underlined in this chapter. Finally, a concrete conclusion including current challenges, possible remedies and future prospects are discussed at the end.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fan S, Wu M, Ma S, Zhao S. A preventive and control strategy for COVID-19 infection: an experience from a third-tier Chinese City. Front Public Health. 2020;8:562024.CrossRef Fan S, Wu M, Ma S, Zhao S. A preventive and control strategy for COVID-19 infection: an experience from a third-tier Chinese City. Front Public Health. 2020;8:562024.CrossRef
2.
go back to reference Seshadri DR, Davies EV, Harlow ER, Hsu JJ, Knighton SC, Walker TA, Voos JE, Drummond CK. Wearable sensors for COVID-19: a call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Front Dig Health. 2020;2:8.CrossRef Seshadri DR, Davies EV, Harlow ER, Hsu JJ, Knighton SC, Walker TA, Voos JE, Drummond CK. Wearable sensors for COVID-19: a call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Front Dig Health. 2020;2:8.CrossRef
3.
go back to reference Neibert P. Device for indicating the temperature distribution of hot bodies, U.S. patent, US2071471A, 23 February 1933. Neibert P. Device for indicating the temperature distribution of hot bodies, U.S. patent, US2071471A, 23 February 1933.
4.
go back to reference Saxena N, Kumar P, Gupta V. CdS : SiO2 nanocomposite as a luminescence-based wide range temperature sensor. RSC Adv. 2015;5(90):73545–51.CrossRef Saxena N, Kumar P, Gupta V. CdS : SiO2 nanocomposite as a luminescence-based wide range temperature sensor. RSC Adv. 2015;5(90):73545–51.CrossRef
5.
go back to reference Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica. 1967;34:149–54.CrossRef Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica. 1967;34:149–54.CrossRef
6.
go back to reference Pugh-Thomas D, Walsh BM, Gupta MC. CdSe(ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology. 2011;22(18):185503.CrossRef Pugh-Thomas D, Walsh BM, Gupta MC. CdSe(ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology. 2011;22(18):185503.CrossRef
7.
go back to reference Zhang L-G, Fan X-W, Lu S-Z. Exciton-phonon scattering in CdSe_ZnSe quantum dots. Chin Phys Lett. 2002;19:578–80.CrossRef Zhang L-G, Fan X-W, Lu S-Z. Exciton-phonon scattering in CdSe_ZnSe quantum dots. Chin Phys Lett. 2002;19:578–80.CrossRef
8.
go back to reference Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Physik. 1968;216(4):398–410.CrossRef Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Physik. 1968;216(4):398–410.CrossRef
9.
go back to reference Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A. 1968;23(a):2135–6.CrossRef Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A. 1968;23(a):2135–6.CrossRef
10.
go back to reference Chadwick B, Gal M. An optical temperature sensor using surface plasmons. Jpn J Appl Phys. 1993;32:2716–7.CrossRef Chadwick B, Gal M. An optical temperature sensor using surface plasmons. Jpn J Appl Phys. 1993;32:2716–7.CrossRef
11.
go back to reference Chochol J, Postava K, Cada M, Pistora J. Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application. Sci Rep. 2017;7(1):13117.CrossRef Chochol J, Postava K, Cada M, Pistora J. Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application. Sci Rep. 2017;7(1):13117.CrossRef
12.
go back to reference Dey R, Kumar Rai V. Er3+-Tm3+-Yb3+:CaMoO4 phosphor as an outstanding upconversion-based optical temperature sensor and optical heater. Methods Appl Fluoresc. 2017;5(1):015006.CrossRef Dey R, Kumar Rai V. Er3+-Tm3+-Yb3+:CaMoO4 phosphor as an outstanding upconversion-based optical temperature sensor and optical heater. Methods Appl Fluoresc. 2017;5(1):015006.CrossRef
13.
go back to reference Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S, Takei K. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv Healthc Mater. 2017;6(17) Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S, Takei K. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv Healthc Mater. 2017;6(17)
14.
go back to reference Lee CY, Lee SJ, Tang MS, Chen PC. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors (Basel). 2011;11(10):9942–50.CrossRef Lee CY, Lee SJ, Tang MS, Chen PC. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors (Basel). 2011;11(10):9942–50.CrossRef
15.
go back to reference Wang Q, Zhang L, Sun C, Yu Q. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement. IEEE Sensors J. 2008;8(11):1879–83.CrossRef Wang Q, Zhang L, Sun C, Yu Q. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement. IEEE Sensors J. 2008;8(11):1879–83.CrossRef
16.
go back to reference Sibinski M, Jakubowska M, Sloma M. Flexible temperature sensors on fibers. Sensors (Basel). 2010;10(9):7934–46.CrossRef Sibinski M, Jakubowska M, Sloma M. Flexible temperature sensors on fibers. Sensors (Basel). 2010;10(9):7934–46.CrossRef
17.
go back to reference Jiang X, Li BQ, Qu X, Yang H, Liu H. Thermal sensing with CdTe/CdS/ZnS quantum dots in human umbilical vein endothelial cells. J Mater Chem B. 2017;5(45):8983–90.CrossRef Jiang X, Li BQ, Qu X, Yang H, Liu H. Thermal sensing with CdTe/CdS/ZnS quantum dots in human umbilical vein endothelial cells. J Mater Chem B. 2017;5(45):8983–90.CrossRef
18.
go back to reference Zhang H, Wu Y, Gan Z, Yang Y, Liu Y, Tang P, Wu D. Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles. J Mater Chem B. 2019;7(17):2835–44.CrossRef Zhang H, Wu Y, Gan Z, Yang Y, Liu Y, Tang P, Wu D. Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles. J Mater Chem B. 2019;7(17):2835–44.CrossRef
19.
go back to reference Han B, Hanson WL, Bensalah K, Tuncel A, Stern JM, Cadeddu JA. Development of quantum dot-mediated fluorescence thermometry for thermal therapies. Ann Biomed Eng. 2009;37(6):1230–9.CrossRef Han B, Hanson WL, Bensalah K, Tuncel A, Stern JM, Cadeddu JA. Development of quantum dot-mediated fluorescence thermometry for thermal therapies. Ann Biomed Eng. 2009;37(6):1230–9.CrossRef
20.
go back to reference Kumar P, Saxena N, Dewan S, Singh F, Gupta V. Giant UV-sensitivity of ion beam irradiated nanocrystalline CdS thin films. RSC Adv. 2016;6(5):3642–9.CrossRef Kumar P, Saxena N, Dewan S, Singh F, Gupta V. Giant UV-sensitivity of ion beam irradiated nanocrystalline CdS thin films. RSC Adv. 2016;6(5):3642–9.CrossRef
21.
go back to reference Kumar P, Saxena N, Singh F, Gupta V. Ion beam assisted fortification of photoconduction and photosensitivity. Sens Actuator A Phys. 2018;279:343–50.CrossRef Kumar P, Saxena N, Singh F, Gupta V. Ion beam assisted fortification of photoconduction and photosensitivity. Sens Actuator A Phys. 2018;279:343–50.CrossRef
22.
go back to reference Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.CrossRef Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.CrossRef
23.
go back to reference Kalsi T, Kumar P. Cd1-xMgxS CQD thin films for high performance and highly selective NIR photodetection. Dalton Trans. 2021;50(36):12708–15.CrossRef Kalsi T, Kumar P. Cd1-xMgxS CQD thin films for high performance and highly selective NIR photodetection. Dalton Trans. 2021;50(36):12708–15.CrossRef
24.
go back to reference Singh S, Khan ZH, Khan MB, Kumar P, Kumar P. Quantum dots-sensitized solar cells: a review on strategic developments. Bull Mater Sci. 2022;45(2) Singh S, Khan ZH, Khan MB, Kumar P, Kumar P. Quantum dots-sensitized solar cells: a review on strategic developments. Bull Mater Sci. 2022;45(2)
25.
go back to reference Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nanomaterials (Basel). 2019;9(2) Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nanomaterials (Basel). 2019;9(2)
26.
go back to reference Claucherty S, Sakaue H. Temperature characterization of an optical-chemical tunable-peak sensor using CdSe/ZnS quantum-dots applied on anodized-aluminum for surface temperature measurement. Sensors Actuators B Chem. 2017;251:958–62.CrossRef Claucherty S, Sakaue H. Temperature characterization of an optical-chemical tunable-peak sensor using CdSe/ZnS quantum-dots applied on anodized-aluminum for surface temperature measurement. Sensors Actuators B Chem. 2017;251:958–62.CrossRef
27.
go back to reference Wang S, Westcott S, Chen W. Nanoparticle luminescence thermometry. J Phys Chem B. 2002;106:11203–9.CrossRef Wang S, Westcott S, Chen W. Nanoparticle luminescence thermometry. J Phys Chem B. 2002;106:11203–9.CrossRef
28.
go back to reference Jaschinski E, Wehner M. CdSe-ZnS quantum dots as temperature sensors during thermal coagulation of bovine serum albumin (BSA) solder. Appl Phys A. 2012;107(3):691–6.CrossRef Jaschinski E, Wehner M. CdSe-ZnS quantum dots as temperature sensors during thermal coagulation of bovine serum albumin (BSA) solder. Appl Phys A. 2012;107(3):691–6.CrossRef
29.
go back to reference Park Y, Koo C, Chen HY, Han A, Son DH. Ratiometric temperature imaging using environment-insensitive luminescence of Mn-doped core-shell nanocrystals. Nanoscale. 2013;5(11):4944–50.CrossRef Park Y, Koo C, Chen HY, Han A, Son DH. Ratiometric temperature imaging using environment-insensitive luminescence of Mn-doped core-shell nanocrystals. Nanoscale. 2013;5(11):4944–50.CrossRef
30.
go back to reference Matsuda Y, Torimoto T, Kameya T, Kameyama T, Kuwabata S, Yamaguchi H, Niimi T. ZnS–AgInS2 nanoparticles as a temperature sensor. Sensors Actuators B Chem. 2013;176:505–8.CrossRef Matsuda Y, Torimoto T, Kameya T, Kameyama T, Kuwabata S, Yamaguchi H, Niimi T. ZnS–AgInS2 nanoparticles as a temperature sensor. Sensors Actuators B Chem. 2013;176:505–8.CrossRef
31.
go back to reference Zhang P, Pan A, Yan K, Zhu Y, Hong J, Liang P. High-efficient and reversible temperature sensor fabricated from highly luminescent CdTe/ZnS-SiO2 nanocomposites for rolling bearings. Sensors Actuators A Phys. 2021;328:112758.CrossRef Zhang P, Pan A, Yan K, Zhu Y, Hong J, Liang P. High-efficient and reversible temperature sensor fabricated from highly luminescent CdTe/ZnS-SiO2 nanocomposites for rolling bearings. Sensors Actuators A Phys. 2021;328:112758.CrossRef
32.
go back to reference Haro-Gonzalez P, Martinez-Maestro L, Martin IR, Garcia-Sole J, Jaque D. High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small. 2012;8(17):2652–8.CrossRef Haro-Gonzalez P, Martinez-Maestro L, Martin IR, Garcia-Sole J, Jaque D. High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small. 2012;8(17):2652–8.CrossRef
33.
go back to reference Wang H-L, Yang A-J, Sui C-H. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film. Optoelectron Lett. 2013;9(6):421–4.CrossRef Wang H-L, Yang A-J, Sui C-H. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film. Optoelectron Lett. 2013;9(6):421–4.CrossRef
34.
go back to reference Ke T-T, Lo Y-L, Sung T-W, Liao C-C. CdSe quantum dots embedded in matrices: characterization and application for low-pressure and temperature sensors. IEEE Sensors J. 2016;16(8):2404–10.CrossRef Ke T-T, Lo Y-L, Sung T-W, Liao C-C. CdSe quantum dots embedded in matrices: characterization and application for low-pressure and temperature sensors. IEEE Sensors J. 2016;16(8):2404–10.CrossRef
35.
go back to reference Sung T-W, Lo Y-L. Dual sensing of temperature and oxygen using PtTFPP-doped CdSe/SiO2 core–shell nanoparticles. Sensors Actuators B Chem. 2012;173:406–13.CrossRef Sung T-W, Lo Y-L. Dual sensing of temperature and oxygen using PtTFPP-doped CdSe/SiO2 core–shell nanoparticles. Sensors Actuators B Chem. 2012;173:406–13.CrossRef
36.
go back to reference Kusama H, Sovers OJ, Yoshioka T. Line shift method for phosphor temperature measurements. Jpn J Appl Phys. 1976;15:2349–58.CrossRef Kusama H, Sovers OJ, Yoshioka T. Line shift method for phosphor temperature measurements. Jpn J Appl Phys. 1976;15:2349–58.CrossRef
37.
go back to reference Alencar M, Maciel GS, de Araújo CB, Patra A. Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett. 2004;84(23):4753–5.CrossRef Alencar M, Maciel GS, de Araújo CB, Patra A. Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett. 2004;84(23):4753–5.CrossRef
38.
go back to reference Yan W, Bai G, Ye R, Yang X, Xie H, Xu S. Dual-mode luminescence tuning of Er3+ doped Zinc Sulfide piezoelectric microcrystals for multi-dimensional anti-counterfeiting and temperature sensing. Opt Commun. 2020;475:126262.CrossRef Yan W, Bai G, Ye R, Yang X, Xie H, Xu S. Dual-mode luminescence tuning of Er3+ doped Zinc Sulfide piezoelectric microcrystals for multi-dimensional anti-counterfeiting and temperature sensing. Opt Commun. 2020;475:126262.CrossRef
39.
go back to reference Vlaskin VA, Janssen N, van Rijssel J, Beaulac R, Gamelin DR. Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 2010;10(9):3670–4.CrossRef Vlaskin VA, Janssen N, van Rijssel J, Beaulac R, Gamelin DR. Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 2010;10(9):3670–4.CrossRef
40.
go back to reference McLaurin EJ, Bradshaw LR, Gamelin DR. Dual-Emitting Nanoscale Temperature Sensors. Chem Mater. 2013;25(8):1283–92.CrossRef McLaurin EJ, Bradshaw LR, Gamelin DR. Dual-Emitting Nanoscale Temperature Sensors. Chem Mater. 2013;25(8):1283–92.CrossRef
41.
go back to reference Jethi L, Krause MM, Kambhampati P. Toward ratiometric nanothermometry via intrinsic dual emission from semiconductor nanocrystals. J Phys Chem Lett. 2015;6(4):718–21.CrossRef Jethi L, Krause MM, Kambhampati P. Toward ratiometric nanothermometry via intrinsic dual emission from semiconductor nanocrystals. J Phys Chem Lett. 2015;6(4):718–21.CrossRef
42.
go back to reference Zhao H, Vomiero A, Rosei F. Tailoring the heterostructure of colloidal quantum dots for ratiometric optical nanothermometry. Small. 2020;16(28):e2000804.CrossRef Zhao H, Vomiero A, Rosei F. Tailoring the heterostructure of colloidal quantum dots for ratiometric optical nanothermometry. Small. 2020;16(28):e2000804.CrossRef
43.
go back to reference Chong SS, Aziz AR, Harun SW. Fibre optic sensors for selected wastewater characteristics. Sensors (Basel). 2013;13(7):8640–68.CrossRef Chong SS, Aziz AR, Harun SW. Fibre optic sensors for selected wastewater characteristics. Sensors (Basel). 2013;13(7):8640–68.CrossRef
44.
go back to reference Dakin JP, Pratt DJ, Bibby GW, Ross JN. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron Lett. 1985;21:569–70.CrossRef Dakin JP, Pratt DJ, Bibby GW, Ross JN. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron Lett. 1985;21:569–70.CrossRef
45.
go back to reference Rao Y-J. In-fibre Bragg grating sensors. Meas Sci Technol. 1997;8:355–75.CrossRef Rao Y-J. In-fibre Bragg grating sensors. Meas Sci Technol. 1997;8:355–75.CrossRef
46.
go back to reference Hu X, Shen X, Wu J, Peng J, Yang L, Li J, Li H, Dai N. All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber. Opt Express. 2016;24(19):21693–9.CrossRef Hu X, Shen X, Wu J, Peng J, Yang L, Li J, Li H, Dai N. All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber. Opt Express. 2016;24(19):21693–9.CrossRef
47.
go back to reference Yuan L, Wei T, Han Q, Wang H, Huang J, Jiang L, Xiao H. Fiber inline Michelson interferometer fabricated by afemtosecond laser. Opt Lett. 2012;37:4489.CrossRef Yuan L, Wei T, Han Q, Wang H, Huang J, Jiang L, Xiao H. Fiber inline Michelson interferometer fabricated by afemtosecond laser. Opt Lett. 2012;37:4489.CrossRef
48.
go back to reference Cui Y, Shum PP, Hu DJJ, Wang G, Humbert G, Dinh XQ. Sagnac interferometer based temperature sensor by using selectively filled photonic crystal fiber. In: Proceedings of IEEE Photonics Conference, 23–27 September 2012, Burlingame, CA. p. 743–4. Cui Y, Shum PP, Hu DJJ, Wang G, Humbert G, Dinh XQ. Sagnac interferometer based temperature sensor by using selectively filled photonic crystal fiber. In: Proceedings of IEEE Photonics Conference, 23–27 September 2012, Burlingame, CA. p. 743–4.
49.
go back to reference Tsai WH, Lin CJ. A novel structure for the intrinsic fabry–perot fiber-optic temperature sensor. J Light Technol. 2001;19:682–6.CrossRef Tsai WH, Lin CJ. A novel structure for the intrinsic fabry–perot fiber-optic temperature sensor. J Light Technol. 2001;19:682–6.CrossRef
50.
go back to reference Sifuentes C, Starodumov AN, Filippov VN, Lipovskii AA. Application of CdSe-nanocrystallite-doped glass for temperature measurements in fiber sensors. Opt Eng. 2000;39:2182–6.CrossRef Sifuentes C, Starodumov AN, Filippov VN, Lipovskii AA. Application of CdSe-nanocrystallite-doped glass for temperature measurements in fiber sensors. Opt Eng. 2000;39:2182–6.CrossRef
51.
go back to reference Sui C, Xia J, Wang H, Xu T, Yan B, Liu Y. Optical temperature sensor based on ZnO thin film's temperature-dependent optical properties. Rev Sci Instrum. 2011;82(8):084901.CrossRef Sui C, Xia J, Wang H, Xu T, Yan B, Liu Y. Optical temperature sensor based on ZnO thin film's temperature-dependent optical properties. Rev Sci Instrum. 2011;82(8):084901.CrossRef
52.
go back to reference Bueno A, Suarez I, Abargues R, Sales S, Pastor JPM. Temperature sensor based on colloidal quantum dots–PMMA nanocomposite waveguides. IEEE Sensors J. 2012;12(10):3069–74.CrossRef Bueno A, Suarez I, Abargues R, Sales S, Pastor JPM. Temperature sensor based on colloidal quantum dots–PMMA nanocomposite waveguides. IEEE Sensors J. 2012;12(10):3069–74.CrossRef
53.
go back to reference Chun J, Yang W, Kim JS. Thermal stability of CdSe/ZnS quantum dot-based optical fiber temperature sensor. Mol Cryst Liq Cryst. 2011;538(1):333–40.CrossRef Chun J, Yang W, Kim JS. Thermal stability of CdSe/ZnS quantum dot-based optical fiber temperature sensor. Mol Cryst Liq Cryst. 2011;538(1):333–40.CrossRef
54.
go back to reference Wang H, Yang A, Chen Z, Geng Y. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film. Opt Spectrosc. 2014;117(2):235–9.CrossRef Wang H, Yang A, Chen Z, Geng Y. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film. Opt Spectrosc. 2014;117(2):235–9.CrossRef
55.
go back to reference Wang H, Yang A. Temperature sensing property of hollow-core photonic bandgap fiber filled with CdSe/ZnS quantum dots in an UV curing adhesive. Opt Fiber Technol. 2017;38:104–7.CrossRef Wang H, Yang A. Temperature sensing property of hollow-core photonic bandgap fiber filled with CdSe/ZnS quantum dots in an UV curing adhesive. Opt Fiber Technol. 2017;38:104–7.CrossRef
56.
go back to reference Irawati N, Harun SW, Rahman HA, Chong SS, Hamizi NA, Ahmad H. Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber. Appl Opt. 2017;56(16):4675–9.CrossRef Irawati N, Harun SW, Rahman HA, Chong SS, Hamizi NA, Ahmad H. Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber. Appl Opt. 2017;56(16):4675–9.CrossRef
57.
go back to reference Pockrand I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci. 1978;72(3):577–88.CrossRef Pockrand I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci. 1978;72(3):577–88.CrossRef
58.
go back to reference Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors Actuators. 1983;4:299–304.CrossRef Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sensors Actuators. 1983;4:299–304.CrossRef
59.
go back to reference Wan X, Taylor HF. Intrinsic fiber Fabry–Perot temperature sensor with fiber Bragg grating mirrors. Opt Lett. 2002;27:1388–90.CrossRef Wan X, Taylor HF. Intrinsic fiber Fabry–Perot temperature sensor with fiber Bragg grating mirrors. Opt Lett. 2002;27:1388–90.CrossRef
60.
go back to reference Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Appl Opt. 1988;27(6):1160–3.CrossRef Matsubara K, Kawata S, Minami S. Optical chemical sensor based on surface plasmon measurement. Appl Opt. 1988;27(6):1160–3.CrossRef
61.
go back to reference Schilling A, Yavas O, Bischof J, Boneberg J, Leiderer P. Absolute pressure measurements on a nanosecond time scale using surface plasmons. Appl Phys Lett. 1996;69:4159.CrossRef Schilling A, Yavas O, Bischof J, Boneberg J, Leiderer P. Absolute pressure measurements on a nanosecond time scale using surface plasmons. Appl Phys Lett. 1996;69:4159.CrossRef
62.
go back to reference Peng Y, Huang Z, Lu Q. Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl Opt. 2012;51(26):6361–7.CrossRef Peng Y, Huang Z, Lu Q. Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl Opt. 2012;51(26):6361–7.CrossRef
63.
go back to reference F, Villuendas, J. Pelayo optical fibre device for chemical sensing based on surface plasmon excitridon. Sens Actuator A Phys. 1990;23(1–3):1142–5.CrossRef F, Villuendas, J. Pelayo optical fibre device for chemical sensing based on surface plasmon excitridon. Sens Actuator A Phys. 1990;23(1–3):1142–5.CrossRef
64.
go back to reference Fischer LH, Harms GS, Wolfbeis OS. Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed Engl. 2011;50(20):4546–51.CrossRef Fischer LH, Harms GS, Wolfbeis OS. Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed Engl. 2011;50(20):4546–51.CrossRef
65.
go back to reference Kashyap R, Nemova G. Surface plasmon resonance-based fiber and planar waveguide sensors. J Sensors. 2009;2009:1–9.CrossRef Kashyap R, Nemova G. Surface plasmon resonance-based fiber and planar waveguide sensors. J Sensors. 2009;2009:1–9.CrossRef
66.
go back to reference Maestro LM, Jacinto C, Silva UR, Vetrone F, Capobianco JA, Jaque D, Sole JG. CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small. 2011;7(13):1774–8.CrossRef Maestro LM, Jacinto C, Silva UR, Vetrone F, Capobianco JA, Jaque D, Sole JG. CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small. 2011;7(13):1774–8.CrossRef
67.
go back to reference del Rosal B, Carrasco E, Ren F, Benayas A, Vetrone F, Sanz-Rodríguez F, Ma D, Juarranz Á, Jaque D. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv Funct Mater. 2016;26(33):6060–8.CrossRef del Rosal B, Carrasco E, Ren F, Benayas A, Vetrone F, Sanz-Rodríguez F, Ma D, Juarranz Á, Jaque D. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv Funct Mater. 2016;26(33):6060–8.CrossRef
68.
go back to reference Maestro LM, Rodriguez EM, Rodriguez FS, la Cruz MC, Juarranz A, Naccache R, Vetrone F, Jaque D, Capobianco JA, Sole JG. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 2010;10(12):5109–15.CrossRef Maestro LM, Rodriguez EM, Rodriguez FS, la Cruz MC, Juarranz A, Naccache R, Vetrone F, Jaque D, Capobianco JA, Sole JG. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 2010;10(12):5109–15.CrossRef
69.
go back to reference Xu CT, Axelsson J, Andersson-Engels S. Fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett. 2009;94(25):251107.CrossRef Xu CT, Axelsson J, Andersson-Engels S. Fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett. 2009;94(25):251107.CrossRef
70.
go back to reference Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci. 1996;93:10763–8.CrossRef Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci. 1996;93:10763–8.CrossRef
71.
go back to reference Maestro LM, Ramirez-Hernandez JE, Bogdan N, Capobianco JA, Vetrone F, Sole JG, Jaque D. Deep tissue bio-imaging using two-photon excited CdTe fluorescent quantum dots working within the biological window. Nanoscale. 2012;4(1):298–302.CrossRef Maestro LM, Ramirez-Hernandez JE, Bogdan N, Capobianco JA, Vetrone F, Sole JG, Jaque D. Deep tissue bio-imaging using two-photon excited CdTe fluorescent quantum dots working within the biological window. Nanoscale. 2012;4(1):298–302.CrossRef
72.
go back to reference Choudhury D, Jaque D, Rodenas A, Ramsay WT, Paterson L, Kar AK. Quantum dot enabled thermal imaging of optofluidic devices. Lab Chip. 2012;12(13):2414–20.CrossRef Choudhury D, Jaque D, Rodenas A, Ramsay WT, Paterson L, Kar AK. Quantum dot enabled thermal imaging of optofluidic devices. Lab Chip. 2012;12(13):2414–20.CrossRef
Metadata
Title
II–VI Semiconductor-Based Optical Temperature Sensors
Authors
Nupur Saxena
Pragati Kumar
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_16

Premium Partners