Skip to main content
Top

2023 | OriginalPaper | Chapter

17. Introduction to Biosensing

Authors : Ghenadii Korotcenkov, Rabiu Garba Ahmad, Praveen Guleria, Vineet Kumar

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The biosensor is an analytical device that consists of two main segments; a physicochemical converter, a transducer, and a biological element, a bio-receptor, whose functions are performed by enzymes, proteins, nucleic acids, and microorganisms. As a result of the interaction of the bio-receptor with the analyte using a transducer, an electrical or optical signal is generated that is proportional to the analyte. This chapter considers the types of biosensors, their specifics, possible configuration, materials used, and manufacturing and operation features. A brief description of electrochemical, optical, and physical biosensors, as well as enzyme biosensors, aptasensors, protein sensors, immunosensors, cell-based biosensors, and biochips is given. It has been shown that the use of nanomaterials such as quantum dots, nanoparticles, and core-shell structures improves the efficiency of biosensors. The main areas of application of biosensors are considered. It is shown that biosensors can become alternative analytical tools with high efficiency, high sensitivity, and selectivity for applications in various fields such as medicine, agriculture, food quality control, environment monitoring, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abd-Elsalam AK. Nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol. 2013;2(2):1000e107. Abd-Elsalam AK. Nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol. 2013;2(2):1000e107.
2.
go back to reference Adlerberth J, Meng Q, Mecklenburg M, Tian Z, Zhou Y, Bülow L, Xie B. Thermometric analysis of blood metabolites in ICU patients. J Therm Anal Calorim. 2020;140:763–71.CrossRef Adlerberth J, Meng Q, Mecklenburg M, Tian Z, Zhou Y, Bülow L, Xie B. Thermometric analysis of blood metabolites in ICU patients. J Therm Anal Calorim. 2020;140:763–71.CrossRef
3.
go back to reference Akolpoglu MB, Bozuyuk U, Erkoc P, Kizilel S. Biosensing–drug delivery systems for in vivo applications. Adv Biosens Health Care Appl. 2019;2019:249–62.CrossRef Akolpoglu MB, Bozuyuk U, Erkoc P, Kizilel S. Biosensing–drug delivery systems for in vivo applications. Adv Biosens Health Care Appl. 2019;2019:249–62.CrossRef
4.
go back to reference Alhadrami HA. Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2017;65(3):497–508.CrossRef Alhadrami HA. Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem. 2017;65(3):497–508.CrossRef
5.
go back to reference Altintas Z, Davis F, Scheller FW. Applications of quantum dots in biosensors and diagnostics. In: Altintas Z, editor. Biosensors and nanotechnology: applications in health care diagnostics. Wiley; 2017. p. 183–99.CrossRef Altintas Z, Davis F, Scheller FW. Applications of quantum dots in biosensors and diagnostics. In: Altintas Z, editor. Biosensors and nanotechnology: applications in health care diagnostics. Wiley; 2017. p. 183–99.CrossRef
6.
go back to reference Alves RC, Barroso MF, González-García MB, Beatriz M, Oliveira PP, Matos CD. New trends in food allergens detection: toward biosensing strategies. Crit Rev Food Sci Nutr. 2016;56(14):2304–19.CrossRef Alves RC, Barroso MF, González-García MB, Beatriz M, Oliveira PP, Matos CD. New trends in food allergens detection: toward biosensing strategies. Crit Rev Food Sci Nutr. 2016;56(14):2304–19.CrossRef
7.
go back to reference Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron. 2006;21(8):1405–23.CrossRef Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron. 2006;21(8):1405–23.CrossRef
8.
go back to reference Anand TP, Chellaram C, Murugaboopathi G, Parthasarathy V, Vinurajkumar S. Applications of biosensors in food industry. Biosci Biotechnol Res Asia. 2013;10(2):711–4.CrossRef Anand TP, Chellaram C, Murugaboopathi G, Parthasarathy V, Vinurajkumar S. Applications of biosensors in food industry. Biosci Biotechnol Res Asia. 2013;10(2):711–4.CrossRef
9.
go back to reference Anderson GP, King KD, Cao LK, Jacoby M, Ligler FS, Ezzell J. Quantifying serum antiplague antibody with a fiber-optic biosensor. Clin Diagn Lab Immunol. 1998;5(5):609–12.CrossRef Anderson GP, King KD, Cao LK, Jacoby M, Ligler FS, Ezzell J. Quantifying serum antiplague antibody with a fiber-optic biosensor. Clin Diagn Lab Immunol. 1998;5(5):609–12.CrossRef
10.
go back to reference Anderson GP, Breslin KA, Ligler FS. Assay development for a portable fiberoptic biosensor. ASAIO J. 1996;42(6):942–6.CrossRef Anderson GP, Breslin KA, Ligler FS. Assay development for a portable fiberoptic biosensor. ASAIO J. 1996;42(6):942–6.CrossRef
11.
go back to reference Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor technologies in medicine: from detection of biochemical markers to research into molecular targets (review). Sovrem Tekhnologii Med. 2021;12(6):70–83. (in Russian)CrossRef Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor technologies in medicine: from detection of biochemical markers to research into molecular targets (review). Sovrem Tekhnologii Med. 2021;12(6):70–83. (in Russian)CrossRef
12.
go back to reference Anikeeva PO, Madigan CF, Halpert JE, Bawendi MG, Bulovic V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys Rev B. 2008;78:085434.CrossRefADS Anikeeva PO, Madigan CF, Halpert JE, Bawendi MG, Bulovic V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys Rev B. 2008;78:085434.CrossRefADS
13.
go back to reference Arora K. Advances in nano based biosensors for food and agriculture. In: Gothandam KM, Ranjan S, Dasqupta N, Ramalingam C, Lichtfouse E, editors. Nanotechnology, food security and water treatment. Springer; 2018. p. 1–52. Arora K. Advances in nano based biosensors for food and agriculture. In: Gothandam KM, Ranjan S, Dasqupta N, Ramalingam C, Lichtfouse E, editors. Nanotechnology, food security and water treatment. Springer; 2018. p. 1–52.
14.
go back to reference Arora K, Chand S, Malhotra BD. Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta. 2006;568(1–2):259–74.CrossRef Arora K, Chand S, Malhotra BD. Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta. 2006;568(1–2):259–74.CrossRef
15.
go back to reference Baek M, Baker D. Deep learning and protein structure modeling. Nat Methods. 2021;19:11–26. Baek M, Baker D. Deep learning and protein structure modeling. Nat Methods. 2021;19:11–26.
16.
go back to reference Bamdad C. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA. Biophys J. 1998;75(4):1197–2003.CrossRef Bamdad C. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA. Biophys J. 1998;75(4):1197–2003.CrossRef
17.
go back to reference Barreiros dos Santos M, Agusil JP, Prieto-Simón B, Sporer C, Teixeira V, Samitier J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron. 2013;45:174–80.CrossRef Barreiros dos Santos M, Agusil JP, Prieto-Simón B, Sporer C, Teixeira V, Samitier J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron. 2013;45:174–80.CrossRef
18.
go back to reference Belluzo M, Ribone M, Lagier C. Assembling amperometric biosensors for clinical diagnostics. Sensors. 2008;8(3):1366–99.CrossRefADS Belluzo M, Ribone M, Lagier C. Assembling amperometric biosensors for clinical diagnostics. Sensors. 2008;8(3):1366–99.CrossRefADS
19.
go back to reference Bettazzi F, Marraza G, Minunii M. Biosensors and related bioanalytical tools. Compr Anal Chem. 2017;77:1–33.CrossRef Bettazzi F, Marraza G, Minunii M. Biosensors and related bioanalytical tools. Compr Anal Chem. 2017;77:1–33.CrossRef
20.
go back to reference Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z. Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosens Bioelectron. 2016;84:97–105.CrossRef Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z. Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosens Bioelectron. 2016;84:97–105.CrossRef
21.
go back to reference Bishnoi S, Sharma A, Singhal R, Goyal RN. Edge plane pyrolytic graphite as a sensing surface for the determination of fluvoxamine in urine samples of obsessive-compulsive disorder patients. Biosens Bioelectron. 2020;168:112489.CrossRef Bishnoi S, Sharma A, Singhal R, Goyal RN. Edge plane pyrolytic graphite as a sensing surface for the determination of fluvoxamine in urine samples of obsessive-compulsive disorder patients. Biosens Bioelectron. 2020;168:112489.CrossRef
22.
go back to reference Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.CrossRef Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.CrossRef
23.
go back to reference Bollella P, Gorton L. Enzyme based amperometric biosensors. Curr Opin Electrochem. 2018;10:157–73.CrossRef Bollella P, Gorton L. Enzyme based amperometric biosensors. Curr Opin Electrochem. 2018;10:157–73.CrossRef
24.
go back to reference Borisov SM, Wolfbeis OS. Optical biosensors. Chem Rev. 2008;108(2):423–61.CrossRef Borisov SM, Wolfbeis OS. Optical biosensors. Chem Rev. 2008;108(2):423–61.CrossRef
25.
go back to reference Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual F-X, Bratov A. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensors Actuators B Chem. 2018;255:2988–95.CrossRef Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual F-X, Bratov A. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensors Actuators B Chem. 2018;255:2988–95.CrossRef
26.
go back to reference Brosel-Oliu S, Galyamin D, Abramova N, Muñoz-Pascual F-X, Bratov A. Impedimetric label-free sensor for specific bacteria endotoxin detection by surface charge registration. Electrochim Acta. 2017;243:142–51.CrossRef Brosel-Oliu S, Galyamin D, Abramova N, Muñoz-Pascual F-X, Bratov A. Impedimetric label-free sensor for specific bacteria endotoxin detection by surface charge registration. Electrochim Acta. 2017;243:142–51.CrossRef
27.
go back to reference Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, et al. Fully integrated biochip platforms for advanced healthcare. Sensors. 2012;12:11013–60.CrossRefADS Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, et al. Fully integrated biochip platforms for advanced healthcare. Sensors. 2012;12:11013–60.CrossRefADS
28.
go back to reference Çevik E, Dervisevic M, Gavba AR, Yanik-Yildirim KC, Abasiyanik MF, Vardar-Schara G. Amperometric monooxygenase biosensor for the detection of aromatic hydrocarbons. Sens Lett. 2016;14(3):234–40.CrossRef Çevik E, Dervisevic M, Gavba AR, Yanik-Yildirim KC, Abasiyanik MF, Vardar-Schara G. Amperometric monooxygenase biosensor for the detection of aromatic hydrocarbons. Sens Lett. 2016;14(3):234–40.CrossRef
29.
go back to reference Chakraborty B, Ghosh S, Das N, RoyChaudhuri C. Liquid gated ZnO nanorod FET sensor for ultrasensitive detection of hepatitis B surface antigen with vertical electrode configuration. Biosens Bioelectron. 2018;122:58–67.CrossRef Chakraborty B, Ghosh S, Das N, RoyChaudhuri C. Liquid gated ZnO nanorod FET sensor for ultrasensitive detection of hepatitis B surface antigen with vertical electrode configuration. Biosens Bioelectron. 2018;122:58–67.CrossRef
30.
go back to reference Chatterjee K, Sarkar S, Jagajjanani RK, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci. 2014;209:8–39.CrossRef Chatterjee K, Sarkar S, Jagajjanani RK, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci. 2014;209:8–39.CrossRef
31.
go back to reference Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42(12):5425–38.CrossRef Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42(12):5425–38.CrossRef
32.
go back to reference Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus A Hemagglutinin antigen. Sensors. 2015;15:8852–65.CrossRefADS Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus A Hemagglutinin antigen. Sensors. 2015;15:8852–65.CrossRefADS
33.
go back to reference Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst. 2020;145:1605–28.CrossRefADS Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst. 2020;145:1605–28.CrossRefADS
34.
go back to reference Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip. 2007;7:41–57.CrossRef Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip. 2007;7:41–57.CrossRef
35.
go back to reference Cho I, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24:6.CrossRef Cho I, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24:6.CrossRef
36.
go back to reference Chuensirikulchai K, Laopajon W, Phunpae P, Apiratmateekul N, Surinkaew S, Tayapiwatana C, et al. Sandwich antibody-based biosensor system for identification of mycobacterium tuberculosis complex and nontuberculous mycobacteria. J Immunoassay Immunochem. 2019;40(6):590–604.CrossRef Chuensirikulchai K, Laopajon W, Phunpae P, Apiratmateekul N, Surinkaew S, Tayapiwatana C, et al. Sandwich antibody-based biosensor system for identification of mycobacterium tuberculosis complex and nontuberculous mycobacteria. J Immunoassay Immunochem. 2019;40(6):590–604.CrossRef
37.
go back to reference Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102(29):29–45.ADS Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102(29):29–45.ADS
38.
go back to reference Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6(3):189–93.CrossRef Clark LC Jr, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6(3):189–93.CrossRef
39.
go back to reference Cui S, Ling P, Zhu H, Keener H. Plant pest detection using an artificial nose system: a review. Sensors. 2018;18(2):378.CrossRefADS Cui S, Ling P, Zhu H, Keener H. Plant pest detection using an artificial nose system: a review. Sensors. 2018;18(2):378.CrossRefADS
40.
go back to reference Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33:1141–61.CrossRef Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33:1141–61.CrossRef
41.
go back to reference Datta M, Mittal S, Goyal D. Potentiometric Zn2+ biosensor based on bacterial cells. Asian J Biotechnol. 2009;1:67–73.CrossRef Datta M, Mittal S, Goyal D. Potentiometric Zn2+ biosensor based on bacterial cells. Asian J Biotechnol. 2009;1:67–73.CrossRef
42.
go back to reference De Bastida G, Arregui FJ, Javier Goicoechea J, Matias IR. Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sensors J. 2006;6:1378–9.CrossRefADS De Bastida G, Arregui FJ, Javier Goicoechea J, Matias IR. Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sensors J. 2006;6:1378–9.CrossRefADS
43.
go back to reference Deep A, Saraf M, Neha BSK, Sharma AL. Styrene Sulphonic acid doped polyaniline based immunosensor for highly sensitive impedimetric sensing of atrazine. Electrochim Acta. 2014;146:301–6.CrossRef Deep A, Saraf M, Neha BSK, Sharma AL. Styrene Sulphonic acid doped polyaniline based immunosensor for highly sensitive impedimetric sensing of atrazine. Electrochim Acta. 2014;146:301–6.CrossRef
44.
go back to reference De Fátima Giarola J, Mano V, Pereira AC. Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination. Electroanalysis. 2017;30(1):119–27.CrossRef De Fátima Giarola J, Mano V, Pereira AC. Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination. Electroanalysis. 2017;30(1):119–27.CrossRef
45.
go back to reference Deisingh A. Biosensors for microbial detection. Microbiologist. 2003;2:30–3. Deisingh A. Biosensors for microbial detection. Microbiologist. 2003;2:30–3.
46.
go back to reference Dervisevic M, Dervisevic E, Cevik E, Senel M. Novel electrochemical xanthine biosensor based on chitosan-polypyrrole-gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal. 2017;25(3):510–9.CrossRef Dervisevic M, Dervisevic E, Cevik E, Senel M. Novel electrochemical xanthine biosensor based on chitosan-polypyrrole-gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal. 2017;25(3):510–9.CrossRef
47.
go back to reference Dietrich JA, McKee AE, Keasling JD. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem. 2010;79:563–90.CrossRef Dietrich JA, McKee AE, Keasling JD. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem. 2010;79:563–90.CrossRef
48.
go back to reference Dinshaw IJ, Muniandy S, Teh SJ, Ibrahim F, Leo BF, Thong KL. Development of an aptasensor using reduced graphene oxide chitosan complex to detect salmonella. J Electroanal Chem. 2017;806:88–96.CrossRef Dinshaw IJ, Muniandy S, Teh SJ, Ibrahim F, Leo BF, Thong KL. Development of an aptasensor using reduced graphene oxide chitosan complex to detect salmonella. J Electroanal Chem. 2017;806:88–96.CrossRef
49.
go back to reference Dippel AB, Anderson WA, Evans RS, Deutsch S, Hammond MC. Chemiluminescent biosensors for detection of second messenger cyclic di-GMP. ACS Chem Biol. 2018;13:1872–9.CrossRef Dippel AB, Anderson WA, Evans RS, Deutsch S, Hammond MC. Chemiluminescent biosensors for detection of second messenger cyclic di-GMP. ACS Chem Biol. 2018;13:1872–9.CrossRef
50.
go back to reference Du X, Zhou J. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci. 2018;118:444–8.CrossRef Du X, Zhou J. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci. 2018;118:444–8.CrossRef
51.
go back to reference Dudak FC, Boyaci IH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J. 2009;4(7):1003–11.CrossRef Dudak FC, Boyaci IH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J. 2009;4(7):1003–11.CrossRef
52.
go back to reference Durrieu C, Lagarde F, Jaffrezic-Renault N. Nanotechnology assets in biosensors design for environmental monitoring. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer; 2013. p. 189–229.CrossRef Durrieu C, Lagarde F, Jaffrezic-Renault N. Nanotechnology assets in biosensors design for environmental monitoring. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer; 2013. p. 189–229.CrossRef
53.
go back to reference Dziąbowska K, Czaczyk E, Nidzworski D. Application of electrochemical methods in biosensing technologies. In: Rinken T, Kivirand K, editors. Biosensing technologies for the detection of pathogens – a prospective way for rapid analysis. Intechopen; 2018. p. 151–71. Dziąbowska K, Czaczyk E, Nidzworski D. Application of electrochemical methods in biosensing technologies. In: Rinken T, Kivirand K, editors. Biosensing technologies for the detection of pathogens – a prospective way for rapid analysis. Intechopen; 2018. p. 151–71.
54.
go back to reference Dzyadevych S, Jaffrezic-Renault N. Conductometric biosensors. In: Schaudies RP, editor. Biological Identification. Elsevier; 2014. p. 153–93.CrossRef Dzyadevych S, Jaffrezic-Renault N. Conductometric biosensors. In: Schaudies RP, editor. Biological Identification. Elsevier; 2014. p. 153–93.CrossRef
55.
go back to reference Ebara M, editor. Biomaterials Nanoarchitectonics. Elsevier; 2016. Ebara M, editor. Biomaterials Nanoarchitectonics. Elsevier; 2016.
56.
go back to reference El-Said WA, Abdelshakour M, Choi J-H, Choi J-W. Application of conducting polymer nanostructures to electrochemical biosensors. Molecules. 2020;25(2):307.CrossRef El-Said WA, Abdelshakour M, Choi J-H, Choi J-W. Application of conducting polymer nanostructures to electrochemical biosensors. Molecules. 2020;25(2):307.CrossRef
57.
go back to reference Emaminejad S, Javanmard M, Dutton RW, Davis RW. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab Chip. 2012;12:4499–507.CrossRef Emaminejad S, Javanmard M, Dutton RW, Davis RW. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab Chip. 2012;12:4499–507.CrossRef
58.
go back to reference Fang Y, Umasankar Y, Ramasamy RP. Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst. 2014;139(15):3804–10.CrossRefADS Fang Y, Umasankar Y, Ramasamy RP. Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst. 2014;139(15):3804–10.CrossRefADS
59.
go back to reference Frasco MF, Chantiotakas N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors. 2009;9:7266–86.CrossRefADS Frasco MF, Chantiotakas N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors. 2009;9:7266–86.CrossRefADS
60.
go back to reference Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, et al. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2 @MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron. 2018;102:189–95.CrossRef Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, et al. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2 @MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron. 2018;102:189–95.CrossRef
61.
go back to reference Gardeniers JG, van den Berg A. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem. 2004;378:1700–3.CrossRef Gardeniers JG, van den Berg A. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem. 2004;378:1700–3.CrossRef
62.
go back to reference Gayda G, Demkiv O, Stasyuk N, Serkiz R, Lootsik M, Errachid A, et al. Metallic nanoparticles obtained via “green” synthesis as a platform for biosensor construction. Appl Sci. 2019;9(4):720.CrossRef Gayda G, Demkiv O, Stasyuk N, Serkiz R, Lootsik M, Errachid A, et al. Metallic nanoparticles obtained via “green” synthesis as a platform for biosensor construction. Appl Sci. 2019;9(4):720.CrossRef
63.
go back to reference Ghica M, Pauliukaite R, Fatibello-Filho O, Brett MAC. Application of functionalized carbon nanotubes immobilized into chitosan films in amperometric enzymes biosensors. Sensors Actuators B Chem. 2009;142:308–12.CrossRef Ghica M, Pauliukaite R, Fatibello-Filho O, Brett MAC. Application of functionalized carbon nanotubes immobilized into chitosan films in amperometric enzymes biosensors. Sensors Actuators B Chem. 2009;142:308–12.CrossRef
64.
go back to reference Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112(4):2373–433.CrossRef Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112(4):2373–433.CrossRef
65.
go back to reference Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, et al. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron. 2018;113:124–35.CrossRef Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, et al. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron. 2018;113:124–35.CrossRef
66.
go back to reference Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors. 2008;8(3):1400–58.CrossRefADS Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors. 2008;8(3):1400–58.CrossRefADS
67.
go back to reference Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal Chem. 2020;128:115906.CrossRef Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal Chem. 2020;128:115906.CrossRef
68.
go back to reference Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53.CrossRef Heller MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4:129–53.CrossRef
69.
go back to reference Hnaiein M, Hassen WM, Abdelghani A. A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection. Electrochem Commun. 2008;10:1152–4.CrossRef Hnaiein M, Hassen WM, Abdelghani A. A conductometric immunosensor based on functionalized magnetite nanoparticles for E. coli detection. Electrochem Commun. 2008;10:1152–4.CrossRef
70.
go back to reference Hong S, Lee C. The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol J. 2018;34(2):85–92.CrossRef Hong S, Lee C. The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol J. 2018;34(2):85–92.CrossRef
71.
go back to reference Huang J, Zhong Y, Li W, Wang W, Li C, s, et al. Fluorescent and opt-electric recording bacterial identification device for ultrasensitive and specific detection of microbials. ACS Sens. 2021;6:443–9.CrossRef Huang J, Zhong Y, Li W, Wang W, Li C, s, et al. Fluorescent and opt-electric recording bacterial identification device for ultrasensitive and specific detection of microbials. ACS Sens. 2021;6:443–9.CrossRef
72.
go back to reference Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem. 2019;7:724.CrossRefADS Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem. 2019;7:724.CrossRefADS
73.
go back to reference Jiang H, Ju H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem. 2007;79:6690–6.CrossRef Jiang H, Ju H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem. 2007;79:6690–6.CrossRef
74.
go back to reference Jiang Y, Tian B. Inorganic semiconductor biointerfaces. Nat Rev Mater. 2018;3:473–90.CrossRefADS Jiang Y, Tian B. Inorganic semiconductor biointerfaces. Nat Rev Mater. 2018;3:473–90.CrossRefADS
75.
go back to reference Jiang YW, Li X, Liu B, Yi J, Fang Y, Shi F, et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng. 2018;2:508–21.CrossRef Jiang YW, Li X, Liu B, Yi J, Fang Y, Shi F, et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat Biomed Eng. 2018;2:508–21.CrossRef
76.
go back to reference Jie G, Zhang J, Wang D, Cheng C, Chen H-Y, Zhu J-J. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem. 2008;80:4033–9.CrossRef Jie G, Zhang J, Wang D, Cheng C, Chen H-Y, Zhu J-J. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem. 2008;80:4033–9.CrossRef
77.
go back to reference Jonkheijm P, Weinrich D, Schroeder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed. 2008;47:9618–47.CrossRef Jonkheijm P, Weinrich D, Schroeder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed. 2008;47:9618–47.CrossRef
78.
go back to reference Jyoung JY, Hong S, Lee W, Choi JW. Immunosensor for the detection of vibrio cholerae O1 using surface plasmon resonance. Biosens Bioelectron. 2006;21(12):2315–9.CrossRef Jyoung JY, Hong S, Lee W, Choi JW. Immunosensor for the detection of vibrio cholerae O1 using surface plasmon resonance. Biosens Bioelectron. 2006;21(12):2315–9.CrossRef
79.
go back to reference Karunakaran C, Bhargava K, Benjamin R, editors. Biosensors and bioelectronics. Netherlands: Elsevier; 2015. Karunakaran C, Bhargava K, Benjamin R, editors. Biosensors and bioelectronics. Netherlands: Elsevier; 2015.
80.
go back to reference Katz E, Willner B. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Edn. 2000;39:1180–218.CrossRef Katz E, Willner B. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Edn. 2000;39:1180–218.CrossRef
81.
go back to reference Kavousi F, Goodarzi M, Ghanbari D, Hedayati K. Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. J Mol Struct. 2019;1183:324–30.CrossRefADS Kavousi F, Goodarzi M, Ghanbari D, Hedayati K. Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. J Mol Struct. 2019;1183:324–30.CrossRefADS
82.
go back to reference Kavosia B, Navaee A, Salimi A. Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decoratedof AuNPs-PAMAM dendrimer. Luminescence. 2018;204:368–74.CrossRefADS Kavosia B, Navaee A, Salimi A. Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decoratedof AuNPs-PAMAM dendrimer. Luminescence. 2018;204:368–74.CrossRefADS
83.
go back to reference Khan T, Civas M, Cetinkaya O, Abbasi NA, Akan OB. Nanosensor networks for smart health care. In: Han B, Tomer VK, Nguyen TA, Singh PK, editors. Nanosensors for smart cities. Elsevier; 2020. p. 387–403.CrossRef Khan T, Civas M, Cetinkaya O, Abbasi NA, Akan OB. Nanosensor networks for smart health care. In: Han B, Tomer VK, Nguyen TA, Singh PK, editors. Nanosensors for smart cities. Elsevier; 2020. p. 387–403.CrossRef
84.
go back to reference Klima JC, Doyle LA, Lee JD, Rappleye M, Gagnon LA, Lee MY, et al. Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nat Commun. 2021;12:856.CrossRefADS Klima JC, Doyle LA, Lee JD, Rappleye M, Gagnon LA, Lee MY, et al. Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nat Commun. 2021;12:856.CrossRefADS
85.
go back to reference Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55(8):2313–20.CrossRef Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55(8):2313–20.CrossRef
86.
go back to reference Kumar KS, Kumar VB, Paik P. Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanopart. 2014;2014:1–24. Kumar KS, Kumar VB, Paik P. Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanopart. 2014;2014:1–24.
87.
go back to reference Leca-Bouvier D, Blum LJ. Enzyme for biosensing applications. In: Zourob M, editor. Recognition receptors in biosensors. New York: Springer; 2010. p. 177–220.CrossRef Leca-Bouvier D, Blum LJ. Enzyme for biosensing applications. In: Zourob M, editor. Recognition receptors in biosensors. New York: Springer; 2010. p. 177–220.CrossRef
88.
go back to reference Lee AC, Lee Y, Lee D, Kwon S. Divide and conquer: a perspective on biochips for single-cell and rare-molecule analysis by next-generation sequencing. APL Bioeng. 2019;3:020901.CrossRef Lee AC, Lee Y, Lee D, Kwon S. Divide and conquer: a perspective on biochips for single-cell and rare-molecule analysis by next-generation sequencing. APL Bioeng. 2019;3:020901.CrossRef
89.
go back to reference Lepinay S, Staff A, Ianoul A, Albert J. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosens Bioelectron. 2014;52:337–44.CrossRef Lepinay S, Staff A, Ianoul A, Albert J. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosens Bioelectron. 2014;52:337–44.CrossRef
90.
go back to reference Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nano. 2019;9:192. Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A. Optical sensors based on II-VI quantum dots. Nano. 2019;9:192.
91.
go back to reference Li Y, Wang H, Tang H. Chemo/bionanosensors for medical applications. In: Han B, Tomer VK, Nguyen TA, Singh PK, editors. Nanosensors for smart cities. Elsevier; 2020a. p. 483–500.CrossRef Li Y, Wang H, Tang H. Chemo/bionanosensors for medical applications. In: Han B, Tomer VK, Nguyen TA, Singh PK, editors. Nanosensors for smart cities. Elsevier; 2020a. p. 483–500.CrossRef
92.
go back to reference Li Z, Liu Y, Chen X, Cao H, Shen H, Mou L, et al. Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosens Bioelectron. 2020b;166:112444.CrossRef Li Z, Liu Y, Chen X, Cao H, Shen H, Mou L, et al. Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosens Bioelectron. 2020b;166:112444.CrossRef
93.
go back to reference Luo M, Chen X, Zhou G, Xiang X, Chen L, Jia X, He Z. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Commun. 2012;48:1126–8.CrossRef Luo M, Chen X, Zhou G, Xiang X, Chen L, Jia X, He Z. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Commun. 2012;48:1126–8.CrossRef
94.
go back to reference Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent advances of conducting polymers and their composites for electrochemical biosensing applications. J Funct Biomater. 2020;11(4):71.CrossRef Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent advances of conducting polymers and their composites for electrochemical biosensing applications. J Funct Biomater. 2020;11(4):71.CrossRef
95.
go back to reference Lyagin IV, Efremenko EN, Varfolomeev SD. Enzymatic biosensors for determination of pesticides. Russ Chem Rev. 2017;86(4):339.CrossRefADS Lyagin IV, Efremenko EN, Varfolomeev SD. Enzymatic biosensors for determination of pesticides. Russ Chem Rev. 2017;86(4):339.CrossRefADS
96.
go back to reference Ma S, Li X, Lee Y-K, Zhang A. Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens Bioelectron. 2018a;117:276–82.CrossRef Ma S, Li X, Lee Y-K, Zhang A. Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens Bioelectron. 2018a;117:276–82.CrossRef
97.
go back to reference Ma F, Li C, Zhang C. Development of quantum dot-based biosensors: principles and applications. J Mater Chem B. 2018b;6:6173–90.CrossRef Ma F, Li C, Zhang C. Development of quantum dot-based biosensors: principles and applications. J Mater Chem B. 2018b;6:6173–90.CrossRef
98.
go back to reference Mallakpour S, Behranvand V. Polymeric nanoparticles: recent development in synthesis and application. eXPRESS Polym Lett. 2016;10(11):895–913.CrossRef Mallakpour S, Behranvand V. Polymeric nanoparticles: recent development in synthesis and application. eXPRESS Polym Lett. 2016;10(11):895–913.CrossRef
99.
go back to reference Makiola A, Dickie IA, Holdaway RJ, Wood JR, Orwin KH, Glare TR. Land use is a determinant of plant pathogen alpha- but not beta-diversity. Mol Ecol. 2019;28(16):3786–98.CrossRef Makiola A, Dickie IA, Holdaway RJ, Wood JR, Orwin KH, Glare TR. Land use is a determinant of plant pathogen alpha- but not beta-diversity. Mol Ecol. 2019;28(16):3786–98.CrossRef
100.
go back to reference Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip. 2010;10:418–31.CrossRef Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip. 2010;10:418–31.CrossRef
101.
go back to reference Manoharan H, Kalita P, Gupta S, Sai VVR. Plasmonic biosensors for bacterial endotoxin detection on biomimetic C-18 supported fiber optic probes. Biosens Bioelectron. 2019;129:79–86.CrossRef Manoharan H, Kalita P, Gupta S, Sai VVR. Plasmonic biosensors for bacterial endotoxin detection on biomimetic C-18 supported fiber optic probes. Biosens Bioelectron. 2019;129:79–86.CrossRef
102.
go back to reference Marchenko SV, Kucherenko IS, Hereshko AN, Panasiuk IV, Soldatkin OO, El’skaya A V., Soldatkin A.P. Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sensors Actuators B Chem. 2015;207:981–6.CrossRef Marchenko SV, Kucherenko IS, Hereshko AN, Panasiuk IV, Soldatkin OO, El’skaya A V., Soldatkin A.P. Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sensors Actuators B Chem. 2015;207:981–6.CrossRef
103.
go back to reference Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4(3):301–17.CrossRef Marrazza G. Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors. 2014;4(3):301–17.CrossRef
104.
go back to reference Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–31.CrossRef Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–31.CrossRef
105.
go back to reference Mehrotra P. Biosensors and their applications – A review. J Oral Biol Craniofac Res. 2016;6(2):153–9.CrossRef Mehrotra P. Biosensors and their applications – A review. J Oral Biol Craniofac Res. 2016;6(2):153–9.CrossRef
106.
go back to reference Mendes RK, Laschi S, Stach-Machado DR, Kubota LT, Marrazza G. A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sensors Actuators B Chem. 2012;166-167:135–40.CrossRef Mendes RK, Laschi S, Stach-Machado DR, Kubota LT, Marrazza G. A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sensors Actuators B Chem. 2012;166-167:135–40.CrossRef
107.
go back to reference Mercante LA, Scagion VP, Migliorini FL, Mattoso LHC, Correa DS. Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC Trends Anal Chem. 2017;91:91–103.CrossRef Mercante LA, Scagion VP, Migliorini FL, Mattoso LHC, Correa DS. Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC Trends Anal Chem. 2017;91:91–103.CrossRef
108.
go back to reference Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci. 2004;5:782–92.CrossRef Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci. 2004;5:782–92.CrossRef
109.
go back to reference Moharana M, Pattanayak SK. Biosensors: a better biomarker for diseases diagnosis. In: Chaki J, Dey N, De D, editors. Smart biosensors in medical care. Elsevier; 2020. p. 49–64.CrossRef Moharana M, Pattanayak SK. Biosensors: a better biomarker for diseases diagnosis. In: Chaki J, Dey N, De D, editors. Smart biosensors in medical care. Elsevier; 2020. p. 49–64.CrossRef
111.
go back to reference Mosbach K, Danielsson B. An enzyme thermistor. Biochim Biophys Acta. 1974;364:140–5.CrossRef Mosbach K, Danielsson B. An enzyme thermistor. Biochim Biophys Acta. 1974;364:140–5.CrossRef
112.
go back to reference Moyo M, Okonkwo JO, Agyei NM. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb Technol. 2014;56:28–34.CrossRef Moyo M, Okonkwo JO, Agyei NM. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb Technol. 2014;56:28–34.CrossRef
113.
go back to reference Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, Leo BF. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry. 2019;127:136–44.CrossRef Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, Leo BF. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry. 2019;127:136–44.CrossRef
114.
go back to reference Nabaei V, Chandrawati R, Heidari H. Magnetic biosensors: modelling and simulation. Biosens Bioelectron. 2018;103:69–86.CrossRef Nabaei V, Chandrawati R, Heidari H. Magnetic biosensors: modelling and simulation. Biosens Bioelectron. 2018;103:69–86.CrossRef
115.
go back to reference Nasrin F, Chowdhury AD, Takemura K, Lee J, Adegoke O, Deo VK, Abe F, Suzuki T, Park EY. Single-step detection of norovirus tuning localized surface Plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens Bioelectron. 2018;122:16–24.CrossRef Nasrin F, Chowdhury AD, Takemura K, Lee J, Adegoke O, Deo VK, Abe F, Suzuki T, Park EY. Single-step detection of norovirus tuning localized surface Plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens Bioelectron. 2018;122:16–24.CrossRef
116.
go back to reference Nikoleli G-P, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel biosensors for the rapid detection of toxicants in foods. Adv Food Nutr Res. 2018;84:57–102.CrossRef Nikoleli G-P, Nikolelis DP, Siontorou CG, Karapetis S, Varzakas T. Novel biosensors for the rapid detection of toxicants in foods. Adv Food Nutr Res. 2018;84:57–102.CrossRef
117.
go back to reference Nomoev AV, Bardakhanov SP, Schreiber M, Bazarova DG, Romanov NA, Baldanov BB, et al. Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J Nanotechnol. 2015;6:874–80.CrossRef Nomoev AV, Bardakhanov SP, Schreiber M, Bazarova DG, Romanov NA, Baldanov BB, et al. Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J Nanotechnol. 2015;6:874–80.CrossRef
118.
go back to reference Nquyet NT, Yen LTH, Doan VY, Hoang NL, Van Thu V, Lan H, et al. A label-free and highly sensitive DNA biosensor based on the core-shell structured CeO2-NR@Ppy nanocomposite for Salmonella detection. Mater Sci Eng C. 2019;96:790–7.CrossRef Nquyet NT, Yen LTH, Doan VY, Hoang NL, Van Thu V, Lan H, et al. A label-free and highly sensitive DNA biosensor based on the core-shell structured CeO2-NR@Ppy nanocomposite for Salmonella detection. Mater Sci Eng C. 2019;96:790–7.CrossRef
119.
go back to reference Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors (Basel). 2013;13(5):5777–95.CrossRefADS Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors (Basel). 2013;13(5):5777–95.CrossRefADS
120.
go back to reference Parnianchi F, Nazari M, Maleki J, Mohebi M. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int Nano Lett. 2018;8:229–39.CrossRef Parnianchi F, Nazari M, Maleki J, Mohebi M. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int Nano Lett. 2018;8:229–39.CrossRef
121.
go back to reference Pilo M, Farre R, Lachowicz JI, Masolo E, Panzanelli A, Sanna G, et al. Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (Poly)Thiophene films. J Anal Methods Chem. 2018;2018:1849439.CrossRef Pilo M, Farre R, Lachowicz JI, Masolo E, Panzanelli A, Sanna G, et al. Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (Poly)Thiophene films. J Anal Methods Chem. 2018;2018:1849439.CrossRef
122.
go back to reference Plekhanova YV, Reshetilov AN. Microbial biosensors for the determitation of pesticides. J Anal Chem. 2019;74(12):883–901. (in Russian)CrossRef Plekhanova YV, Reshetilov AN. Microbial biosensors for the determitation of pesticides. J Anal Chem. 2019;74(12):883–901. (in Russian)CrossRef
123.
go back to reference Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11(3):448.CrossRefADS Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 2018;11(3):448.CrossRefADS
124.
go back to reference Pohanka M, Drobik O, Krenkova Z, Zdarova-Karasova J, Pikula J, Cabal J, Kuca K. Voltammetric biosensor based on acetylcholinesterase and different immobilization protocols: a simple tool for toxic organophosphate assay. Anal Lett. 2011;44(7):1254–64.CrossRef Pohanka M, Drobik O, Krenkova Z, Zdarova-Karasova J, Pikula J, Cabal J, Kuca K. Voltammetric biosensor based on acetylcholinesterase and different immobilization protocols: a simple tool for toxic organophosphate assay. Anal Lett. 2011;44(7):1254–64.CrossRef
125.
go back to reference Pohanka M, Skládal P. Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol (Praha). 2007;52(4):325–30.CrossRef Pohanka M, Skládal P. Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis. Folia Microbiol (Praha). 2007;52(4):325–30.CrossRef
126.
go back to reference Quijano-Rubio A, Yeh H-W, Park J, Lee H, Langan RA, Boyken SE, et al. De novo design of modular and tunable protein biosensors. Nature. 2021;591:482–7.CrossRefADS Quijano-Rubio A, Yeh H-W, Park J, Lee H, Langan RA, Boyken SE, et al. De novo design of modular and tunable protein biosensors. Nature. 2021;591:482–7.CrossRefADS
127.
go back to reference Rabiu GA, Kumar V. Microorgansim based biosensors to detect soil pollutants. Plant Arch. 2020;20(Suppl 2):2509–16. Rabiu GA, Kumar V. Microorgansim based biosensors to detect soil pollutants. Plant Arch. 2020;20(Suppl 2):2509–16.
128.
go back to reference Rama EC, González-García MB, Costa-García A. Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated screen-printed carbon electrodes. Sensors Actuators B Chem. 2014;201:567–71.CrossRef Rama EC, González-García MB, Costa-García A. Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated screen-printed carbon electrodes. Sensors Actuators B Chem. 2014;201:567–71.CrossRef
129.
go back to reference Renella G, Giagnoni L. Light dazzles from the black box: whole-cell biosensors are ready to inform on fundamental soil biological processes. Chem Biol Technol Agric. 2016;3:8.CrossRef Renella G, Giagnoni L. Light dazzles from the black box: whole-cell biosensors are ready to inform on fundamental soil biological processes. Chem Biol Technol Agric. 2016;3:8.CrossRef
130.
go back to reference Rodriguezmozaz-Mozaz S, Alda M, Marco M, Barcelo D. Biosensors for environmental monitoring: a global perspective. Talanta. 2005;65(2):291–7.CrossRef Rodriguezmozaz-Mozaz S, Alda M, Marco M, Barcelo D. Biosensors for environmental monitoring: a global perspective. Talanta. 2005;65(2):291–7.CrossRef
131.
go back to reference Ronkainen N, Okon S. Nanomaterial-based electrochemical immunosensors for clinically significant biomarkers. Materials (Basel). 2014;7(6):4669–709.CrossRefADS Ronkainen N, Okon S. Nanomaterial-based electrochemical immunosensors for clinically significant biomarkers. Materials (Basel). 2014;7(6):4669–709.CrossRefADS
132.
go back to reference Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–89.CrossRef Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–89.CrossRef
133.
go back to reference Sadasivuni KK, Ponnamma D, Kim J, Cabibihan J-J, AlMaadeed MA, editors. Biopolymer composites in electronics. Elsevier; 2017. Sadasivuni KK, Ponnamma D, Kim J, Cabibihan J-J, AlMaadeed MA, editors. Biopolymer composites in electronics. Elsevier; 2017.
134.
go back to reference Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Hasanzadeh F. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol. 2012;34(4):507–15.CrossRef Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Hasanzadeh F. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol. 2012;34(4):507–15.CrossRef
135.
go back to reference Salek-Maghsoudi A, Vakhshiteh F, Torabi R. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron. 2018;99:122–35.CrossRef Salek-Maghsoudi A, Vakhshiteh F, Torabi R. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron. 2018;99:122–35.CrossRef
136.
go back to reference Saylan Y, Erdem Ö, Ünal S, Denizli A. An alternative medical diagnosis method: biosensors for virus detection. Biosensors. 2019;9(2):65.CrossRef Saylan Y, Erdem Ö, Ünal S, Denizli A. An alternative medical diagnosis method: biosensors for virus detection. Biosensors. 2019;9(2):65.CrossRef
137.
go back to reference Schenkmayerová A, Bučko M, Gemeiner P, Katrlík J. Microbial monooxygenase amperometric biosensor for monitoring of Baeyer–Villiger biotransformation. Biosens Bioelectron. 2013;50:235–8.CrossRef Schenkmayerová A, Bučko M, Gemeiner P, Katrlík J. Microbial monooxygenase amperometric biosensor for monitoring of Baeyer–Villiger biotransformation. Biosens Bioelectron. 2013;50:235–8.CrossRef
138.
go back to reference Senel M, Alachkar A. Lab-in-a-pencil graphite: a 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level. Lab Chip. 2021;21:405–11.CrossRef Senel M, Alachkar A. Lab-in-a-pencil graphite: a 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level. Lab Chip. 2021;21:405–11.CrossRef
139.
go back to reference Singh P, Yadava RDS. Nanosensors for health care. In: Han B, Tomer VK, Kumar P, editors. Nanosensors for smart cities. Elsevier; 2020. p. 433–50.CrossRef Singh P, Yadava RDS. Nanosensors for health care. In: Han B, Tomer VK, Kumar P, editors. Nanosensors for smart cities. Elsevier; 2020. p. 433–50.CrossRef
140.
go back to reference Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation. Front Genet. 2018;9:616.CrossRef Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation. Front Genet. 2018;9:616.CrossRef
141.
go back to reference Singh S, Kaushal A, Khare S. DNA chip based sensor for amperometric detection of infectious pathogens. Int J Biol Macromol. 2017;103:355–9.CrossRef Singh S, Kaushal A, Khare S. DNA chip based sensor for amperometric detection of infectious pathogens. Int J Biol Macromol. 2017;103:355–9.CrossRef
142.
go back to reference Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem. 2014;197:385–404.CrossRef Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem. 2014;197:385–404.CrossRef
143.
go back to reference Shang Z, Xu Y, Gu Y, Wang Y, Wei D, Zhan L. A rapid detection of pesticide residue based on piezoelectric biosensor. Procedia Eng. 2011;15:4480–5.CrossRef Shang Z, Xu Y, Gu Y, Wang Y, Wei D, Zhan L. A rapid detection of pesticide residue based on piezoelectric biosensor. Procedia Eng. 2011;15:4480–5.CrossRef
144.
go back to reference Shang L, Zhang L, Dong S. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst. 2009;134:107–13.CrossRefADS Shang L, Zhang L, Dong S. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst. 2009;134:107–13.CrossRefADS
145.
go back to reference Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, et al. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb). 2019;55(68):10096–9.CrossRef Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, et al. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb). 2019;55(68):10096–9.CrossRef
146.
go back to reference Sin ML, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14(2):225–44.CrossRef Sin ML, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14(2):225–44.CrossRef
147.
go back to reference Sleno L, Emili A. Proteomic methods for drug target discovery. Curr Opin Chem Biol. 2008;12:46–54.CrossRef Sleno L, Emili A. Proteomic methods for drug target discovery. Curr Opin Chem Biol. 2008;12:46–54.CrossRef
148.
go back to reference Song L, Mao K, Zhou X, Hu J. A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta. 2016;146:285–90.CrossRef Song L, Mao K, Zhou X, Hu J. A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta. 2016;146:285–90.CrossRef
149.
go back to reference Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788–99.CrossRef Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788–99.CrossRef
150.
go back to reference Sutarlie L, Ow SY, Su X. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J. 2016;12(4):1–25. Sutarlie L, Ow SY, Su X. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J. 2016;12(4):1–25.
151.
go back to reference Tang W, Yu J, Wang Z, Jeerapan I, Yin L, Zhang F, He P. Label-free potentiometric aptasensing platform for the detection of Pb2þ based on guanine quadruplex structure. Anal Chim Acta. 2019;1078:53–9.CrossRef Tang W, Yu J, Wang Z, Jeerapan I, Yin L, Zhang F, He P. Label-free potentiometric aptasensing platform for the detection of Pb2þ based on guanine quadruplex structure. Anal Chim Acta. 2019;1078:53–9.CrossRef
152.
go back to reference Teles FRR, Fonseca LP. Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C. 2008;28(8):1530–43.CrossRef Teles FRR, Fonseca LP. Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C. 2008;28(8):1530–43.CrossRef
153.
go back to reference Tian BZ, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science. 2010;329:830–4.CrossRefADS Tian BZ, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science. 2010;329:830–4.CrossRefADS
154.
go back to reference Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Anal Lett. 2001;34:635–59.CrossRef Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Anal Lett. 2001;34:635–59.CrossRef
155.
go back to reference Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999;71:2333–48.CrossRef Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999;71:2333–48.CrossRef
156.
go back to reference Tombelli S. Piezoelectric biosensors for medical applications. In: Higson S, editor. Biosensors for medical applications. Elsevier; 2012. p. 41–64.CrossRef Tombelli S. Piezoelectric biosensors for medical applications. In: Higson S, editor. Biosensors for medical applications. Elsevier; 2012. p. 41–64.CrossRef
157.
go back to reference Wilfried GJ, Van Sark HM, Frederix PLTM, Bol AA, Gerritsen HC, Meijerink A. Bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem. 2002;3:871–9.CrossRef Wilfried GJ, Van Sark HM, Frederix PLTM, Bol AA, Gerritsen HC, Meijerink A. Bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem. 2002;3:871–9.CrossRef
158.
go back to reference Velychko TP, Soldatkin ОО, Melnyk VG, Marchenko SV, Kirdeciler SK, Akata B, Dzyadevych SV. A novel conductometric urea biosensor with improved analytical characteristic based on recombinant urease adsorbed on nanoparticle of silicalite. Nanoscale Res Lett. 2016;11(1):106.CrossRefADS Velychko TP, Soldatkin ОО, Melnyk VG, Marchenko SV, Kirdeciler SK, Akata B, Dzyadevych SV. A novel conductometric urea biosensor with improved analytical characteristic based on recombinant urease adsorbed on nanoparticle of silicalite. Nanoscale Res Lett. 2016;11(1):106.CrossRefADS
159.
go back to reference Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48(1):11.CrossRef Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48(1):11.CrossRef
160.
go back to reference Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4:11.CrossRef Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4:11.CrossRef
161.
go back to reference Urmann K, Reich P, Walter JG, Beckmann D, Segal E, Scheper T. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. J Biotechnol. 2017;257:171–7.CrossRef Urmann K, Reich P, Walter JG, Beckmann D, Segal E, Scheper T. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. J Biotechnol. 2017;257:171–7.CrossRef
162.
go back to reference Utkin DV, Ossina NA, Kouklev VE, Erokhin PS, Scherbakova SA, Kutyrev VV. Biosensors: current state and prospects of applying in laboratory diagnostics of particularly dangerous infectious diseases. Problems of particularly dangerous infections. 2009;102:11–4. (in Russian). Utkin DV, Ossina NA, Kouklev VE, Erokhin PS, Scherbakova SA, Kutyrev VV. Biosensors: current state and prospects of applying in laboratory diagnostics of particularly dangerous infectious diseases. Problems of particularly dangerous infections. 2009;102:11–4. (in Russian).
163.
go back to reference Wang X, Cheng M, Yang Q, Wei H, Xia A, Wang L, et al. A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress. Sci Total Environ. 2019a;697:134097.CrossRefADS Wang X, Cheng M, Yang Q, Wei H, Xia A, Wang L, et al. A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress. Sci Total Environ. 2019a;697:134097.CrossRefADS
164.
go back to reference Wang Z, Yao X, Wang R, Ji Y, Yue T, Sun J, Li T, Wang J, Zhang D. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis. Biosens Bioelectron. 2019b;132:360–7.CrossRef Wang Z, Yao X, Wang R, Ji Y, Yue T, Sun J, Li T, Wang J, Zhang D. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis. Biosens Bioelectron. 2019b;132:360–7.CrossRef
165.
go back to reference Wang Z, Zhang Y, Zhang B, Lu X. Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin. Talanta. 2018;190:1–8.CrossRef Wang Z, Zhang Y, Zhang B, Lu X. Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin. Talanta. 2018;190:1–8.CrossRef
166.
go back to reference Wang Y, Li X, Cao W, Li Y, Li H, Du B, Wei Q. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded toluidine blue/gold nanoparticles decorated KIT-6/carboxymethyl chitosan/ionic liquids as signal labels. Biosens Bioelectron. 2014;61:618–24.CrossRef Wang Y, Li X, Cao W, Li Y, Li H, Du B, Wei Q. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded toluidine blue/gold nanoparticles decorated KIT-6/carboxymethyl chitosan/ionic liquids as signal labels. Biosens Bioelectron. 2014;61:618–24.CrossRef
167.
go back to reference Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. 2012;177:245–70.CrossRef Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. 2012;177:245–70.CrossRef
168.
go back to reference Wang DB, Bi LJ, Zhang ZP, Chen YY, Yang RF, Wei HP, et al. Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst. 2009;134(4):738–42.CrossRefADS Wang DB, Bi LJ, Zhang ZP, Chen YY, Yang RF, Wei HP, et al. Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst. 2009;134(4):738–42.CrossRefADS
169.
go back to reference Wang S, Yumei TY, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitotsan nanocomposites. Biosens Biolectron. 2008;23:1781–7.CrossRef Wang S, Yumei TY, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitotsan nanocomposites. Biosens Biolectron. 2008;23:1781–7.CrossRef
170.
go back to reference Wang LY, Wang L, Gao F, Yu ZY, Wu ZM. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acid. Analyst. 2002;127:977–80.CrossRefADS Wang LY, Wang L, Gao F, Yu ZY, Wu ZM. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acid. Analyst. 2002;127:977–80.CrossRefADS
171.
go back to reference Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed. 2009;48:7744–51.CrossRef Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed. 2009;48:7744–51.CrossRef
172.
go back to reference Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron. 2016;85:649–56.CrossRef Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron. 2016;85:649–56.CrossRef
173.
go back to reference Wu K, Saha R, Su D, Krishna VD, Liu J, Cheeran MC-J, Wang J-P. Magnetic nanosensor-based virus and pathogen detection strategies before and during COVID-19. ACS Appl Nano Mater. 2020;3(10):9560–80.CrossRef Wu K, Saha R, Su D, Krishna VD, Liu J, Cheeran MC-J, Wang J-P. Magnetic nanosensor-based virus and pathogen detection strategies before and during COVID-19. ACS Appl Nano Mater. 2020;3(10):9560–80.CrossRef
174.
go back to reference Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol. 2007;73(6):1251–8.CrossRef Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol. 2007;73(6):1251–8.CrossRef
175.
go back to reference Yamanaka K, Vestergaard MC, Tamiya E. Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors. 2016;16(10):1761.CrossRefADS Yamanaka K, Vestergaard MC, Tamiya E. Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors. 2016;16(10):1761.CrossRefADS
176.
go back to reference Yang R, Liu S, Wu Z, Tan Y, Sun S. Core-shell assay based aptasensor for sensitive and selective thrombin detection using dark-field microscopy. Talanta. 2018;182:348–53.CrossRef Yang R, Liu S, Wu Z, Tan Y, Sun S. Core-shell assay based aptasensor for sensitive and selective thrombin detection using dark-field microscopy. Talanta. 2018;182:348–53.CrossRef
177.
go back to reference Yoon JY. Introduction. In: Yoon JY, editor. Introduction to biosensors. Cham: Springer; 2016.CrossRef Yoon JY. Introduction. In: Yoon JY, editor. Introduction to biosensors. Cham: Springer; 2016.CrossRef
178.
go back to reference Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron. 2018;106:193–203.CrossRef Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron. 2018;106:193–203.CrossRef
179.
go back to reference Zarei SS, Soleimanian-Zad S, Ensafi AA. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Mikrochim Acta. 2018;185(12):538.CrossRef Zarei SS, Soleimanian-Zad S, Ensafi AA. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Mikrochim Acta. 2018;185(12):538.CrossRef
180.
go back to reference Zhang S, Ma L, Ma K, Xu B, Liu L, Tian W. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. ACS Omega. 2018;3(10):12886–92.CrossRef Zhang S, Ma L, Ma K, Xu B, Liu L, Tian W. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. ACS Omega. 2018;3(10):12886–92.CrossRef
181.
go back to reference Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2014;87(1):230–49.CrossRef Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2014;87(1):230–49.CrossRef
182.
go back to reference Zehani N, Kherrat R, Dzyadevych SV, Jaffrezic-Renault N. A microconductometric biosensor based on lipase extracted from Candida rugose for direct and rapid detection of organophosphate pesticides. Int J Environ Anal Chem. 2015;95(5):466–79.CrossRef Zehani N, Kherrat R, Dzyadevych SV, Jaffrezic-Renault N. A microconductometric biosensor based on lipase extracted from Candida rugose for direct and rapid detection of organophosphate pesticides. Int J Environ Anal Chem. 2015;95(5):466–79.CrossRef
Metadata
Title
Introduction to Biosensing
Authors
Ghenadii Korotcenkov
Rabiu Garba Ahmad
Praveen Guleria
Vineet Kumar
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_17

Premium Partners