Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

14-11-2019

Structural, optical and electrical characterization of SnS nanomaterials grown at different temperatures

Authors: Chandan Rana, Satyajit Saha

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

SnS nanocrystals were synthesized by simple wet chemical precipitation method. XRD results shows that the crystals are orthorhombic in phase. TEM images indicate that the grain sizes are almost spherical within the range 5 nm to 10 nm. Crystalline natures of the samples were confirmed by HRTEM. AFM analysis shows that surface roughness were found to be moderate. EDAX analysis revealed that the samples are maintained good stoichiometric ratio of Sn/S. From UV–Vis absorption spectra it is evident that SnS nanocrystals are good absorbing materials for solar light. PL spectra indicate a red shift of SnS nanocrystals occurred with increase growth temperature. Time correlated single photon counting (TCSPC) measurements revealed that PL decay life times are in the order of picosecond. The temperature varying SnS nanocrystals were p-type in nature with electrical conductivities were ranging from 0.020 to 0.037 Ohm−1 cm−1 and carrier concentrations were 7.05 × 1013 cm−3 to 1.54 × 1014 cm−3. Carriers drift mobilities were found to be high compared to the reported results. Therefore, SnS nanocrystals having low resistivity, higher drift mobility, higher carrier concentrations, small PL decay life time and high absorption coefficient exhibited excellent properties for the fabrication of optoelectronic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.L. Rogach, Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater. Sci. Eng. B 69–70, 435–440 (2000)CrossRef A.L. Rogach, Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater. Sci. Eng. B 69–70, 435–440 (2000)CrossRef
2.
go back to reference Y. Lee, Y. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef Y. Lee, Y. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef
3.
go back to reference X. Fang, U.K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi, D. Golberg, Multiangular branched ZnS nanostructures with needle-shaped tips: potential luminescent and field-emitter nanomaterial. J. Phys. Chem. C 112, 4735–4742 (2008)CrossRef X. Fang, U.K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi, D. Golberg, Multiangular branched ZnS nanostructures with needle-shaped tips: potential luminescent and field-emitter nanomaterial. J. Phys. Chem. C 112, 4735–4742 (2008)CrossRef
4.
go back to reference J. Yoon, S. Jo, I.S. Chun, I. Jung, H. Kim, M. Meitl, E. Menard, X. Li, J.J. Coleman, U. Paik, J.A. Rogers, GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010)CrossRef J. Yoon, S. Jo, I.S. Chun, I. Jung, H. Kim, M. Meitl, E. Menard, X. Li, J.J. Coleman, U. Paik, J.A. Rogers, GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010)CrossRef
5.
go back to reference N.K. Reddy, K.T.R. Reddy, Electrical properties of spray pyrolytic tin sulfide films. Solid State Electron 49, 902–906 (2005)CrossRef N.K. Reddy, K.T.R. Reddy, Electrical properties of spray pyrolytic tin sulfide films. Solid State Electron 49, 902–906 (2005)CrossRef
6.
go back to reference H. Liu, Y. Liu, Z. Wang, P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21, 105707 (2010)CrossRef H. Liu, Y. Liu, Z. Wang, P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21, 105707 (2010)CrossRef
7.
go back to reference S.F. Wang, W. Wang, W.K. Fong, Y. Yu, C. Surya, Tin compensation for the SnS based optoelectronic devices. Nature 7, 39704 (2017) S.F. Wang, W. Wang, W.K. Fong, Y. Yu, C. Surya, Tin compensation for the SnS based optoelectronic devices. Nature 7, 39704 (2017)
8.
go back to reference M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, M.E. Calixto, Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis. Thin Solid Films 517, 2497–2499 (2009)CrossRef M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, M.E. Calixto, Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis. Thin Solid Films 517, 2497–2499 (2009)CrossRef
9.
go back to reference S.S. Hegde, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, M. Prashantha, Optical and electrical properties of SnS semiconductor crystals grown by physical vapour deposition technique. Phys. B 406, 1143–1148 (2011)CrossRef S.S. Hegde, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, M. Prashantha, Optical and electrical properties of SnS semiconductor crystals grown by physical vapour deposition technique. Phys. B 406, 1143–1148 (2011)CrossRef
11.
go back to reference H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen, Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40, 591–595 (2005)CrossRef H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen, Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40, 591–595 (2005)CrossRef
12.
go back to reference S. Cheng, G. Conibeer, Physical properties of very thin films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)CrossRef S. Cheng, G. Conibeer, Physical properties of very thin films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)CrossRef
13.
go back to reference Y. Lei, Y. Xing, W. Fan, S. Songa, H. Zhang, Synthesis, characterization and optical property of flower-like indium tin sulfide nanostructures. Dalton Trans. 9, 1620–1623 (2009)CrossRef Y. Lei, Y. Xing, W. Fan, S. Songa, H. Zhang, Synthesis, characterization and optical property of flower-like indium tin sulfide nanostructures. Dalton Trans. 9, 1620–1623 (2009)CrossRef
14.
go back to reference F. Hua, C. Tana, H. Ye, X. Chena, G. Zhang, SnS monolayer as gas sensors: insights from a first-principles investigation. IEEE, 18th Intemational Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2017 F. Hua, C. Tana, H. Ye, X. Chena, G. Zhang, SnS monolayer as gas sensors: insights from a first-principles investigation. IEEE, 18th Intemational Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2017
15.
go back to reference H. Karami, S. Babaei, Application of tin sulfide-tin dioxide nanocomposite as oxygen gas-sensing agent. Int. J. Electrochem. Sci. 8, 12078–12087 (2013) H. Karami, S. Babaei, Application of tin sulfide-tin dioxide nanocomposite as oxygen gas-sensing agent. Int. J. Electrochem. Sci. 8, 12078–12087 (2013)
16.
go back to reference Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution synthesis of ultrathin single crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197–6207 (2012)CrossRef Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution synthesis of ultrathin single crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197–6207 (2012)CrossRef
17.
go back to reference J. Cai, Z. Li, P.K. Shen, Porous SnS nanorods/carbon hybrid materials as high stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces. 4, 4093–4098 (2012)CrossRef J. Cai, Z. Li, P.K. Shen, Porous SnS nanorods/carbon hybrid materials as high stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces. 4, 4093–4098 (2012)CrossRef
18.
go back to reference D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovoltaic structures using chemically deposited tin sulfide thin films. Thin Solid Films 517, 2500–2502 (2009)CrossRef D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovoltaic structures using chemically deposited tin sulfide thin films. Thin Solid Films 517, 2500–2502 (2009)CrossRef
19.
go back to reference A. Muthuvinayagam, B. Viswanathan, Hydrothermal synthesis and LPG sensing ability of SnS Nanomaterial. Indian J. Chem. 54, 155–160 (2015) A. Muthuvinayagam, B. Viswanathan, Hydrothermal synthesis and LPG sensing ability of SnS Nanomaterial. Indian J. Chem. 54, 155–160 (2015)
20.
go back to reference L.J. Yang, R. Li, N. Huo, Y. Li, Z. Wei, J. Li, Gas-dependent photo response of SnS nanoparticles-based photo detectors. J. Mater. Chem. C 3, 1397–1402 (2015)CrossRef L.J. Yang, R. Li, N. Huo, Y. Li, Z. Wei, J. Li, Gas-dependent photo response of SnS nanoparticles-based photo detectors. J. Mater. Chem. C 3, 1397–1402 (2015)CrossRef
21.
go back to reference J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013)CrossRef J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013)CrossRef
22.
go back to reference M. Salavati-Niasari, D. Ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J Alloys Compd. 492, 570–575 (2010)CrossRef M. Salavati-Niasari, D. Ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J Alloys Compd. 492, 570–575 (2010)CrossRef
23.
go back to reference W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854 (2012)CrossRef W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854 (2012)CrossRef
24.
go back to reference G.H. Yue, Y.D. Lin, X. Wen, L.S. Wang, Y.Z. Chen, D.L. Peng, Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 106, 87–91 (2012)CrossRef G.H. Yue, Y.D. Lin, X. Wen, L.S. Wang, Y.Z. Chen, D.L. Peng, Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 106, 87–91 (2012)CrossRef
25.
go back to reference M. Ganchev, P. Vitanov, M. Sendova-Vassileva, G. Popkirov, H. Dikov, Properties of SnS thin films grown by physical vapour deposition. J. Phys. 682, 012019 (2016) M. Ganchev, P. Vitanov, M. Sendova-Vassileva, G. Popkirov, H. Dikov, Properties of SnS thin films grown by physical vapour deposition. J. Phys. 682, 012019 (2016)
26.
go back to reference A. Ceylan, Synthesis of SnS thin films via high vacuum sulfidation of sputtered Sn thin films. Mater. Lett. 201, 194–197 (2017)CrossRef A. Ceylan, Synthesis of SnS thin films via high vacuum sulfidation of sputtered Sn thin films. Mater. Lett. 201, 194–197 (2017)CrossRef
27.
go back to reference B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J. Phys. D 33, 1054 (2000)CrossRef B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J. Phys. D 33, 1054 (2000)CrossRef
28.
go back to reference S. Suresh, Wet chemical synthesis of tin sulfide nanoparticles and its characterization. Int. J. Phys. Sci. 9(17), 380–385 (2014) S. Suresh, Wet chemical synthesis of tin sulfide nanoparticles and its characterization. Int. J. Phys. Sci. 9(17), 380–385 (2014)
29.
go back to reference S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Synthesis and characterization of different morphological SnS nanomaterials. Adv. Nat. Sci. 5, 045010 (2014) S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Synthesis and characterization of different morphological SnS nanomaterials. Adv. Nat. Sci. 5, 045010 (2014)
30.
go back to reference G.H. Yue, D.L. Peng, P.X. Yan, L.S. Wang, W. Wang, X.H. Luo, Structure and optical properties of SnS thin film prepared by pulse electro deposition. J Alloys Compd. 468, 254–257 (2009)CrossRef G.H. Yue, D.L. Peng, P.X. Yan, L.S. Wang, W. Wang, X.H. Luo, Structure and optical properties of SnS thin film prepared by pulse electro deposition. J Alloys Compd. 468, 254–257 (2009)CrossRef
31.
go back to reference P. Jain, P. Arun, Parameters influencing the optical properties of SnS thin films. J. Semicond. 34, 9 (2013)CrossRef P. Jain, P. Arun, Parameters influencing the optical properties of SnS thin films. J. Semicond. 34, 9 (2013)CrossRef
32.
go back to reference T.S. Reddy, M.C.S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6, 95680–95692 (2016)CrossRef T.S. Reddy, M.C.S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6, 95680–95692 (2016)CrossRef
33.
go back to reference T. Raadik, M. Grossberg, J. Raudoja, R. Traksmaa, J. Krustok, Temperature-dependent photoreflectance of SnS crystals. J. Phys. Chem. Solids 74, 1683–1685 (2013)CrossRef T. Raadik, M. Grossberg, J. Raudoja, R. Traksmaa, J. Krustok, Temperature-dependent photoreflectance of SnS crystals. J. Phys. Chem. Solids 74, 1683–1685 (2013)CrossRef
34.
go back to reference Z. Huda, T. Zaharinie, I.H.S.C. Metselaar, S. Ibrahim, G.J. Min, Kinetics of grain growth in 718 Ni-based superalloy. Arch. Metall. Mater. 59, 847–852 (2014)CrossRef Z. Huda, T. Zaharinie, I.H.S.C. Metselaar, S. Ibrahim, G.J. Min, Kinetics of grain growth in 718 Ni-based superalloy. Arch. Metall. Mater. 59, 847–852 (2014)CrossRef
35.
go back to reference Y. Zhao, Z. Zhang, H. Dang, W. Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B 113, 175–178 (2004)CrossRef Y. Zhao, Z. Zhang, H. Dang, W. Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B 113, 175–178 (2004)CrossRef
36.
go back to reference M.M. Nassary, Temperature dependence of the electrical conductivity: hall effect and thermoelectric power of SnS single crystals. J. Alloy. Compd. 398, 21–25 (2005)CrossRef M.M. Nassary, Temperature dependence of the electrical conductivity: hall effect and thermoelectric power of SnS single crystals. J. Alloy. Compd. 398, 21–25 (2005)CrossRef
37.
go back to reference G.S. Paul, P. Agarwal, Evolution of SnS nanostructures-their structural. Mater. Chem. Phys. 136, 673–679 (2012)CrossRef G.S. Paul, P. Agarwal, Evolution of SnS nanostructures-their structural. Mater. Chem. Phys. 136, 673–679 (2012)CrossRef
38.
go back to reference P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater. 1, 1116–1125 (2011)CrossRef P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater. 1, 1116–1125 (2011)CrossRef
39.
go back to reference N.K. Reddy, K.T.R. Reddy, Preparation and characterisation of sprayed tin sulphide films grown at different precursor concentrations. Mater. Chem. Phys. 102, 13–18 (2007)CrossRef N.K. Reddy, K.T.R. Reddy, Preparation and characterisation of sprayed tin sulphide films grown at different precursor concentrations. Mater. Chem. Phys. 102, 13–18 (2007)CrossRef
40.
go back to reference T.H. Patel, R. Vaidya, S.G. Patel, Growth and transport properties of tin monosulphoselenide single crystals. J. Cryst. Growth 253, 52–58 (2003)CrossRef T.H. Patel, R. Vaidya, S.G. Patel, Growth and transport properties of tin monosulphoselenide single crystals. J. Cryst. Growth 253, 52–58 (2003)CrossRef
41.
go back to reference H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells 35, 325 (1994)CrossRef H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells 35, 325 (1994)CrossRef
Metadata
Title
Structural, optical and electrical characterization of SnS nanomaterials grown at different temperatures
Authors
Chandan Rana
Satyajit Saha
Publication date
14-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02489-1

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue