Skip to main content
Top
Published in: Physics of Metals and Metallography 9/2021

01-09-2021 | STRENGTH AND PLASTICITY

Structure and Properties of New Wrought Al–Cu–Y- and Al–Cu–Er-Based Alloys

Authors: S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, A. V. Pozdniakov

Published in: Physics of Metals and Metallography | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and properties of new wrought aluminum Al–4.5Cu–1.6Y–0.9Mg–0.6Mn–0.2Zr–0.1Ti–0.15Fe–0.15Si and Al–4.0Cu–2.7Er–0.8Mg–0.8Mn–0.2Zr–0.1Ti–0.15Fe–0.15Si alloys are studied. After homogenization and rolling, the structure is formed, which consists of the aluminum-based solid solution strengthened with fine Al3(Zr,Er), Al3(Zr,Y), and Al20Cu2Mn3 phase particles and compact thermally stable phases of solidification origin 1–5 µm in size. The recrystallization after rolling occurs at temperatures above 350°С. As the annealing temperature increases from 400 to 550°С, the recrystallized grain size increases from 6–8 to 10–12 µm. At temperatures of 150–180°С, the hardness increases after 2-h annealing; this is related to the occurrence of aging, and the analogous effect was observed for the cast alloys of these systems. The yield strength of the Y-containing alloy subjected to 6-h annealing at 150°С is 405 MPa; in this case, the relative elongation is 4.5%. As the annealing temperature increases to 210°С, the yield strength of the both alloys decreases to 300 MPa, whereas the relative elongation remains unchanged. In the case of the alloys quenched after rolling and subsequently aged at 210°С, the yield strength of 264–266 MPa and ultimate tensile strength of 356–365 MPa are reached at a relative elongation of 11.3–14.5%. As a result, the new wrought Al–Cu–Y- and Al–Cu–Er-based alloys provide competition for the available industrial alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference GOST (State Standard) 1583–93: Aluminum Casting Alloys. Specifications (Izd. Standartov, Moscow, 1997) [in Russian]. GOST (State Standard) 1583–93: Aluminum Casting Alloys. Specifications (Izd. Standartov, Moscow, 1997) [in Russian].
2.
go back to reference M. V. Glazoff, V. S. Zolotorevsky, and N. A. Belov, Casting Aluminum Alloys (Elsevier, Amsterdam, 2007). M. V. Glazoff, V. S. Zolotorevsky, and N. A. Belov, Casting Aluminum Alloys (Elsevier, Amsterdam, 2007).
3.
go back to reference GOST (State Standard) 4784–97: Aluminum and Wrought Aluminum Alloys. Grades (Izd. Standartov, Moscow, 2000) [in Russian]. GOST (State Standard) 4784–97: Aluminum and Wrought Aluminum Alloys. Grades (Izd. Standartov, Moscow, 2000) [in Russian].
4.
go back to reference I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
5.
go back to reference V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27 (4), 193–198 (2014).CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27 (4), 193–198 (2014).CrossRef
6.
go back to reference V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef
7.
go back to reference D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminum alloys,” Prog. Mat. Sci. 49, 629–711 (2004).CrossRef D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminum alloys,” Prog. Mat. Sci. 49, 629–711 (2004).CrossRef
8.
go back to reference N. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, 188–194 (2016).CrossRef N. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, 188–194 (2016).CrossRef
9.
go back to reference P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samoshina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, 135–142 (2020).CrossRef P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samoshina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, 135–142 (2020).CrossRef
10.
go back to reference N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519–521, 395–400 (2006).CrossRef N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519521, 395–400 (2006).CrossRef
11.
go back to reference N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef
12.
go back to reference A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018).CrossRef
13.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).CrossRef
14.
go back to reference A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef
15.
go back to reference T. K. Akopyan, N. V. Letyagin, N. A. Belov, A. N. Koshmin, and D. Sh. Gizatulin, “Analysis of the microstructure and mechanical properties of a new wrought alloy based on the ((Al) + Al4(Ca,La)) eutectic,” Phys. Met. Metallogr. 121, 914–919 (2020).CrossRef T. K. Akopyan, N. V. Letyagin, N. A. Belov, A. N. Koshmin, and D. Sh. Gizatulin, “Analysis of the microstructure and mechanical properties of a new wrought alloy based on the ((Al) + Al4(Ca,La)) eutectic,” Phys. Met. Metallogr. 121, 914–919 (2020).CrossRef
16.
go back to reference A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef
17.
go back to reference A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
18.
go back to reference A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).CrossRef A. V. Pozdniakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).CrossRef
19.
go back to reference Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef
20.
go back to reference S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef
21.
go back to reference S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).CrossRef S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).CrossRef
22.
go back to reference Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef
23.
go back to reference Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef
24.
go back to reference A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef
25.
go back to reference M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef
26.
go back to reference H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef
27.
go back to reference S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef
28.
go back to reference R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
29.
go back to reference R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdniakov, “Effect of Zr and Er small additives on the phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, 161–168 (2021).CrossRef R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdniakov, “Effect of Zr and Er small additives on the phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, 161–168 (2021).CrossRef
30.
go back to reference R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdnyakov, “Effect of the Zr and Er content on the structure and properties of the Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, 614–620 (2021).CrossRef R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdnyakov, “Effect of the Zr and Er content on the structure and properties of the Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, 614–620 (2021).CrossRef
31.
go back to reference M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).CrossRef M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).CrossRef
32.
go back to reference A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
33.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Techol. 36 (4), 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Techol. 36 (4), 453–459 (2020).CrossRef
34.
go back to reference S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, A. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10 (15), 5345–5353 (2020).CrossRef S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, A. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10 (15), 5345–5353 (2020).CrossRef
35.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020).CrossRef
36.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020).CrossRef
37.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020).CrossRef
38.
go back to reference S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, Fiz. Met. Metalloved. (in press). S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, Fiz. Met. Metalloved. (in press).
39.
go back to reference L. Zhang, P. J. Masset, X. Tao, G. Huang, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).CrossRef L. Zhang, P. J. Masset, X. Tao, G. Huang, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).CrossRef
40.
go back to reference L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).CrossRef L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).CrossRef
41.
go back to reference GOST (State Standard) 21631–76: Sheets of Aluminum and Aluminum Alloys. Specifications (Standartinform, Moscow, 2008) [in Russian]. GOST (State Standard) 21631–76: Sheets of Aluminum and Aluminum Alloys. Specifications (Standartinform, Moscow, 2008) [in Russian].
42.
go back to reference GOST (State Standard) R 51834–2001: Extruded Aluminum Alloy Bars of High Strength and Improved Ductility. Specifications (Izd. Standartov, Moscow, 2002) [in Russian]. GOST (State Standard) R 51834–2001: Extruded Aluminum Alloy Bars of High Strength and Improved Ductility. Specifications (Izd. Standartov, Moscow, 2002) [in Russian].
Metadata
Title
Structure and Properties of New Wrought Al–Cu–Y- and Al–Cu–Er-Based Alloys
Authors
S. M. Amer
R. Yu. Barkov
A. S. Prosviryakov
A. V. Pozdniakov
Publication date
01-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 9/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21080020

Other articles of this Issue 9/2021

Physics of Metals and Metallography 9/2021 Go to the issue